• Title/Summary/Keyword: Segmentation and feature extraction

Search Result 194, Processing Time 0.036 seconds

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.

Image Segmentation Based on the Fuzzy Clustering Algorithm using Average Intracluster Distance (평균내부거리를 적용한 퍼지 클러스터링 알고리즘에 의한 영상분할)

  • You, Hyu-Jai;Ahn, Kang-Sik;Cho, Seok-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3029-3036
    • /
    • 2000
  • Image segmentation is one of the important processes in the image information extraction for computer vision systems. The fuzzy clustering methods have been extensively used in the image segmentation because it extracts feature information of the region. Most of fuzzy clustering methods have used the Fuzzy C-means(FCM) algorithm. This algorithm can be misclassified about the different size of cluster because the degree of membership depends on highly the distance between data and the centroids of the clusters. This paper proposes a fuzzy clustering algorithm using the Average Intracluster Distance that classifies data uniformly without regard to the size of data sets. The Average Intracluster Distance takes an average of the vector set belong to each cluster and increases in exact proportion to its size and density. The experimental results demonstrate that the proposed approach has the g

  • PDF

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.

Depth Image-Based Human Action Recognition Using Convolution Neural Network and Spatio-Temporal Templates (시공간 템플릿과 컨볼루션 신경망을 사용한 깊이 영상 기반의 사람 행동 인식)

  • Eum, Hyukmin;Yoon, Changyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1731-1737
    • /
    • 2016
  • In this paper, a method is proposed to recognize human actions as nonverbal expression; the proposed method is composed of two steps which are action representation and action recognition. First, MHI(Motion History Image) is used in the action representation step. This method includes segmentation based on depth information and generates spatio-temporal templates to describe actions. Second, CNN(Convolution Neural Network) which includes feature extraction and classification is employed in the action recognition step. It extracts convolution feature vectors and then uses a classifier to recognize actions. The recognition performance of the proposed method is demonstrated by comparing other action recognition methods in experimental results.

ECG Pattern Classification Using Back Propagation Neural Network (역전달 신경회로망을 이용한 심전도 신호의 패턴분류에 관한 연구)

  • 이제석;이정환;권혁제;이명호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.67-75
    • /
    • 1993
  • ECG pattern was classified using a back-propagation neural network. An improved feature extractor of ECG is proposed for better classification capability. It is consisted of preprocessing ECG signal by an FIR filter faster than conventional one by a factor of 5. QRS complex recognition by moving-window integration, and peak extraction by quadratic approximation. Since the FIR filter had a periodic frequency spectrum, only one-fifth of usual processing time was required. Also, segmentation of ECG signal followed by quadratic approximation of each segment enabled accurate detection of both P and T waves. When improtant features were extracted and fed into back-propagation neural network for pattern classification, the required number of nodes in hidden and input layers was reduced compared to using raw data as an input, also reducing the necessary time for study. Accurate pattern classification was possible by an appropriate feature selection.

  • PDF

Robust Stroke Extraction Method for Handwritten Korean Characters

  • Park, Young-Kyoo;Rhee, Sang-Burm
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.819-822
    • /
    • 2000
  • The merit of the stroke extraction algorithm is the ease of the feature abstraction from the skeleton of a character, But, extracting strokes from Korean characters has two major problems that must be dealt with. One is extracting primitive strokes and the other is merging or splitting the strokes using dynamic information of the strokes. In this paper, a method is proposed to extract strokes from an off-line handwritten Korean character. We have developed some stroke segmentation rules based on splitting, merging and directional analysis. Using these techniques, we can extract and trace the strokes in an off-line handwritten Korean character accurately and efficiently.

  • PDF

Feature Extraction and Image Segmentation of Mechanical Structures from Human Medical Images (의료 영상을 이용한 인체 역학적 구조물 특징 추출 및 영상 분할)

  • 호동수;김성현;김도일;서태석;최보영;김의녕;이진희;이형구
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • We tried to build human models based on medical images of live Korean, instead of using standard data of human body structures. Characteristics of mechanical structures of human bodies were obtained from medical images such as CT and MR images. For each constitutional part of mechanical structures CT images were analyzed in terms of gray levels and MR images were analyzed in terms of pulse sequence. Characteristic features of various mechanical structures were extracted from the analyses. Based on the characteristics of each structuring element we peformed image segmentation on CT and MR images. We delineated bones, muscles, ligaments and tendons from CT and MR images using image segmentation or manual drawing. For the image segmentation we compared the edge detection method, region growing method and intensity threshold method and applied an optimal compound of these methods for the best segmentation results. Segmented mechanical structures of the head/neck part were three dimensionally reconstructed.

  • PDF

Feature Extraction Techniques from Micro Drill Bits Images (마이크로 드릴 비트 영상에서의 특징 추출 기법)

  • Oh, Se-Jun;Kim, Nak-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.919-920
    • /
    • 2008
  • In this paper, we present early processing techniques for visual inspection of metallic parts. Since metallic surfaces give rise to specular reflections, it is difficult to extract object boundaries using elementary segmentation techniques such as edge detection or binary thresholding. In this paper, we present two techniques for finding object boundaries on micro bit images. First, we explain a technique for detecting blade boundaries using a directional correlation mask. Second, a line and angle extraction technique based on Harris corner detector and Hough transform is described. These techniques have been effective for detecting blade boundaries, and a number of experimental results are presented using real images.

  • PDF

Machine Printed and Handwritten Text Discrimination in Korean Document Images

  • Trieu, Son Tung;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF