Journal of the Computational Structural Engineering Institute of Korea
/
v.23
no.6
/
pp.703-714
/
2010
This paper proposes an approach for staged finite element modeling with coupled seepage and stress analysis. The stage modeling is based on the predefined inter-relationship between the base model and the unit stage models. A unit stage constitutes a complete finite element model, of which the geometries and attributes are subject to changes from stage to stage. The seepage analysis precedes the mechanical stress analysis at every stage. Division of the wet and dry zone and the pore pressures are evaluated from the seepage analysis and used in determining input data for the stress analysis. The results of the stress analysis may also be associated with the pore water pressures. For consolidation analysis, the pore pressure and the displacement variables are mixed in a coupled matrix equation. The time marching solution produces the dissipation of excess pore pressure and variation of stresses with passage of time. For undrained analysis, the excess pore pressures are computed from the stress increment due to loading applied in the unit stage and are used in revising the hydraulic head. The solution results of a unit stage are inherited and accumulated to the subsequent stages through the relationship of the base model and the individual unit stages. Implementation of the proposed approach is outlined on the basis of the core procedures, and numerical examples are presented for demonstration of its application.
This paper presents a case study and numerical investigation to study the hydro-mechanical response of a shallow landslide in unsaturated slopes subjected to rainfall infiltration using a coupled model. The coupled model was interpreted in details by expressing the balance equations for soil mixture and the coupled constitutive equations. The coupled model was verified against experimental data from the shearing-infiltration triaxial tests. A real case of shallow landslide occurred on Mt. Umyeonsan, Seoul, Korea was employed to explore the influence of rainfall infiltration on the slope stability during heavy rainfall. Numerical results showed that the coupled model accurately predicted the poromechanical behavior of a rainfall-induced landslide by simultaneously linking seepage and stress-strain problems. It was also found that the coupled model properly described progress failure of a slope in a highly transient condition. Through the comparisons between the coupled and uncoupled models, the coupled model provided more realistic analysis results under rainfall. Consequently, the coupled model was found to be feasible for the stability and seepage analysis of practical engineering problems.
Journal of The Korean Society of Agricultural Engineers
/
v.57
no.1
/
pp.11-23
/
2015
In this study the laboratory test for hydraulic conductivity and the seepage analysis with finite element method on measurement section of sea dike embankment were performed for the purpose of estimating the relative density of embankment from the measured pore water pressures, and both results of the test and the analysis were coupled with the method of estimating seepage blocking state with the hydraulic head loss rate in sea dike embankment. The relationship of void ratio vs hydraulic head loss rate was obtained by setting hydraulic conductivity as common ordinate on the relationships between the void ratio and the hydraulic conductivity and between the hydraulic conductivity and the hydraulic head loss rate. The void ratio on the segment between measuring points was calculated from the coupled relationship of the void ratio vs the hydraulic conductivity. The allowable upper and lower limits of hydraulic head loss rate and those of void ratio on the safety were generated from the coupled relationship between the laboratory compaction test and the sedimentation test. Current hydraulic head loss rate and void ratio were evaluated in the allowable range between upper and lower limits.
Acid drainage in civil engineering structures such as tunnels may lead to the deposition of precipitates that clog drainage channels and pipework. In evaluating acid drainage, the Fe content of water and precipitates, indicated by reddish brown coloration of rock surfaces, rivers, and soils, may be an important factor. In this study, acid drainage was evaluated by analyzing the Fe content of reddish brown seepage water that occurred in part of a tunnel. Geological investigations around the tunnel revealed a hydrothermal alteration zone cutting the bedrock, and cropping out in the upper parts of the tunnel. Analysis of drillcore revealed many fracture zones and veins. Inductively coupled plasma spectrophotometric analyses of water, precipitates, and soil samples, collected in the seepage water zone and around the tunnel, were conducted to evaluate acid drainage. The Fe content of seepage water in the tunnel was 0.030-0.333 mg/kg, which is 2-22 times higher than in local groundwater. The Fe content of precipitates in the tunnel was 165,403-301,051 mg/kg, similar to the 206,167-422,964 mg/kg content of drillcore from the hydrothermal alteration zone located above the tunnel. It is concluded that the seepage water is derived from Fe-containing acid drainage flowing in perforated tunnel drainpipes along the fracture zones and veins around the hydrothermal alteration zone.
Proceedings of the Korean Geotechical Society Conference
/
2003.03a
/
pp.273-280
/
2003
Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multi-step grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multi-step grouting was evaluated by simultaneously considering two factors: one is the effective stress acting on the tunnel face calculated by limit theorem and limit equilibrium method; the other is the seepage force obtained by means of numerical analysis. The study revealed that the influence of the steel pipe-reinforced multi-step grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage force acting on the tunnel face.
Partially saturated permeability should be defined by the function of suction (or degree of saturation) and porosity. However, commercial software and most researchers' model often describe as the function of suction. The stability of a soil slope can be affected by both hydraulic and shear strength properties of partially saturated soils. For both studies, we generally use an uncoupled seepage analysis program Seep/W(Geo-Slope, 2007) and a series stress-deformation analysis program Sigma/W, or slope stability analysis program Slope/W. Seep/W is performed for simulations of partially saturated flow problems in non-deformable soil media. However, under real situations, the water flow processes in a deformable soil are influenced by soil skeleton movement and the pore water pressure changed due to seepage will lead to changes in stresses and to deformation of a soil. Many researchers are currently developing their models for solving coupled hydro-mechanical problems to simulate slope stability during a rainstorm. For a proper implementation in the field, the developed model should be still needed in order to achieve appropriate accuracy of the solution for coupled hydro-mechanical problems in soil slope stability. Thus, the paper presents the comparison of slope stability between uncoupled and coupled analyses of seepage and stress deformation problems.
Proceedings of the Korean Geotechical Society Conference
/
2010.03a
/
pp.862-870
/
2010
This thesis has been researched on optimized design method for the total cross section of embankment considering the fact that the size of embankment cross section is directly related with economic efficiency when dam designing. In general, embankment cross section of fill dam is either determined by cohesion and angle of internal friction, a strength parameter of embankment materials or by permeability of embankment. Therefore the size of embankment cross section depending on strength parameter of embankment materials was determined by using MIDAS-GTS program through stress-seepage coupled analysis at the time of fill dam design. As a result, determination of embankment cross section was more affected by the size of central core and permeability rather than by slope stability by shear strength and it was revealed that in case of embankment height being over 20m, stability against infiltration and slope action could be secured only when embankment slope is at least over 1:2.5. In addition, it was also revealed that in case of making the size of central core exceeding specification standard, total cross section of embankment could be reduced considerably and at the time of embankment design, adequate size and appropriateness of embankment cross section could be determined with referring the table suggested by this study.
Journal of Korean Tunnelling and Underground Space Association
/
v.7
no.3
/
pp.187-195
/
2005
When a tunnel is excavated below groundwater table, the groundwater flow occurs towards the tunnel resulting in the seepage pressure. In this paper, the effect of groundwater flows on the behavior of shotcrete lining installed between ground-liner interfaces was studied considering permeability ratio between the ground and the shotcrete into account. Three-dimensional coupled finite element analysis was performed for this assessment. Seepage forces will seriously affect the shotcrete behavior since arching phenomena do not occur in seepage forces. A parametric study was conducted on the various tunnelling situations including interfacial properties between ground and shotcrete lining, the shape of tunnel cross-section and the thickness of liner, etc. Moreover, the convergence-confinement method (CCM) of a NATM tunnel considering seepage forces was proposed. The result showed that the more water tight is the shotcrete, the smaller is the convergence and the larger is the internal pressure. Therefore, the watertight fiber-reinforced shotcrete is found to be even more advantageous when used in under water tunnel.
Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multistep grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multistep grouting was evaluated emphasizing the effect of seepage forces. The study revealed that the influence of the steel pipe-reinforced multistep grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage farce acting on the tunnel face.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.34-34
/
2012
Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.