• Title/Summary/Keyword: Seepage of dam

Search Result 88, Processing Time 0.028 seconds

Estimation of Seepage Rate through Core Zone of Rockfill Dam (중심코어형 사력댐의 코어죤 침투량 예측기법)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2010
  • Seepage rate through the core zone of rockfill dam, estimated from graphical technique and the equation by Sakamoto (1998), is different from the real condition because of neglecting unsaturated flow. With existing method to estimate total seepage rate, it is difficult to understand the tendency of total seepage rate changes by reservoir water level change. Steady state seepage rate and the factors affecting the time needed to attain to changes of reservoir water level and saturated hydraulic conductivity and unsaturated hydraulic properties of core material are analysed thorough the 2-D steady and unsteady state seepage analyses of Soyanggang dam. Numerical results revealed that the seepage rate can be expressed by the linear equation form and the value of unsaturated soil parameter n is the most important factor affecting the seepage rate and the time needed to attain steady state. The estimation method presented in this study can be used by the designer and the personnel of dam safety for convenient estimation of seepage rate and quantitative analysis of measured seepage rate without 2-D and 3-D numerical analyses.

Seepage Analysis of Rock -fill Dam Subjected to Water Level Fluctuation (수위가 변동하는 휠댐의 안정성 해석(I))

  • 이대수
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.65-78
    • /
    • 1996
  • The Chungpyung Dam is a 16 yearn old rock-fill dam for a Pumped storage hydro-Power plant, located in the middle of the Korean Peninsula. Since the dam is subjected to the daily water level fluctuation, such as rapid drawdown and refill, thus inducing a structural impact on the behavior of dam body, it draws attention of many engineering concerns. Traditionally, steady-state analysis was employed to investigate the seepage in the dam body, but in this study the seepage analysis was numerically performed by 2-D FEM thansient analysis. As a boundary condition for an analysis, the water level fluctuation was incorporated to simulate the daily change. As a res41t, the various seepage phenomena such as hydraulic gradient, seepage vector, and pore water pressure distribution were quantified at the corresponding time of interest as the water level rises and recedes. The seepage flux was also estimated and compared with the measured data which were both acceptable considering design criteria. The result proves that there is no sign of hazardous sources contributing to the possibility of piping, internal erosion and excess leakage through the dam body.

  • PDF

Study on Seepage Behavior of Concrete Faced Gravel-Fill Dam (표면차수벽형사력댐의 침투거동에 관한 연구)

  • Cho, Sung-Eun;Kim, Ki-Young;Park, Han-Gyu;Ha, Ik-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.836-841
    • /
    • 2008
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.

  • PDF

A Study of the Seepage through Filter Installed Earth Dams (필타설치흙댐의 침수에 관한 연구)

  • Gang, Gwan-Won;Sin, Bang-Ung;Lee, Jae-Gi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.2
    • /
    • pp.4417-4422
    • /
    • 1977
  • This thesis is a result of theoretical and electrical experimental studies for the shape of Seepage on various Earth Dams. The decrement method of seepage through of water amount to earth Dam's was tested by means of experiment by the model constructed in the water tank. A study of the seepage through earth Dam's is necessary for a satisfactory of the same. An attempt was made in these investigations to study the problem of the seepage through homogeneous earth dams with filters located near the axis of the dam and filters extending in to upstream portion of the dam by the electrical analogy method. The experimental results were at variance with the graphical solution given by A Casagrande method. Some of the results were checked by relaxation method and by the circle criterion for drawing flow nets.

  • PDF

An Equation to Estimate Steady-State Seepage Rate of Rockfill Dam (사력댐의 정상상태 침투량 예측식)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.69-80
    • /
    • 2011
  • In this study unsaturated seepage analysis of 8 large rockfill dam managed by Korea Water Resources Corporation, were carried out, and the seepage rate of rockfill dam was analyzed by changing reservoir water level, shape, saturated and unsaturated seepage properties of core zone to present an equation to estimate steady-state seepage rate of rockfill dam. This equation considers unsaturated seepage flow and is applicable to domestic large scale Rockfill dam with the height of more than 50m. Estimated values by the proposed equation are greater than those by the method of Sakamoto (1998), which does not consider unsaturated seepage flow. The difference of estimated values increases with the lower reservoir water level and decreases with the higher reservoir water level. We can be sure that the comparison between the measured seepage rate and the estimated seepage rate by the proposed equation for the existing rockill dam was well-matched. The proposed equation is close to the actual phenomenon compared with the existing equations (Sakamoto, 1998; Chapuis and Aubertin, 2001) because it is based on the results of unsaturated seepage analysis of dams, has upstream and downstream slopes in the range of 1Vertical: (0.2~0.3)Horizontal.

The Analysis of the Slope Stability for the Small Dam (Small Dam의 斜面安定 解析)

  • Choi, Ki-Bong;Bae, Woo-Soek
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.88-92
    • /
    • 2004
  • The paper decribes a procedure for the evaluation of the effect of seepage force on stability of slopes. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change of reservoir level. Seepage forces in embankments are easily determined interest is the stability following a rapid change of resrvoir level. Seepage forces in embankments are easily detemined if frictional forces are expressed in relation to hydraulic gradient I. If a piezometer is inserted into a body of embankment, the level to which fee water rises is a measure of the energy at that point.

A Study on Management Criteria of Seepage for Fill Dams Considering Rainfall Effect (강수를 고려한 필댐 침투수량의 관리기준에 관한 연구)

  • Lee, Jongeun;Yoon, Sukmin;Im, Eun-Sang;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.5
    • /
    • pp.5-16
    • /
    • 2020
  • The purpose of this study is to suggest the management criteria through the decision tree analysis for a seepage, which is an important instrumentation type of the fill dam. In the case of the seepage of the dam in Korea, seepage can be increased rapidly because rainfall directly flow into the downstream slope and abutment of dam during rainfalls. Therefore, it is necessary the management criteria for the seepage of the fill dam in consideration of rainfall. In this study, decision tree analysis was performed for a fill dam in Korea by setting the seepage as the response variable and the rainfall and water level of dam as explanatory variables. As the study results, the water level acted as an explanatory variable from the conditions under daily rainfall of 34.75 mm/day, and the branch conditions of the water level were analyzed to be 37.4 m and 35.23 m. 98% of the rainfall data is distributed under the conditions of the daily rainfall of 34.75 mm/day, and coverage of the seepage is indicated from 13.25 L/min to 24.24 L/min. When the rainfall and water level as the influence factors for the seepage were selected, the influence of the rainfall was dominant. Finally, the seepage of fill dam by considering the rainfall and water level was suggested as a management criteria.

Seepage Face and Reliability Indexes of Anisotropic Homogenous Dam at Steady State Condition (비등방 균질 댐의 정상상태에서의 침투면과 신뢰성지수)

  • Mahmood, Khalid;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.35-42
    • /
    • 2012
  • This paper evaluates the effect of anisotropic conductivity on the seepage face and reliability index of an homogeneous dam with and without toe drain. The analysis are conducted under steady state saturated-unsaturated seepage condition using finite element method. Various anisotropic conductivity ratios were interpreted under such conditions as the vertical conductivity is reduced while the horizon conductivity is fixed. The shear strength of soil is defined by the modified Mohr-Coulomb failure criterion. The analysis results demonstrate that the length of seepage face and reliability index at the downstream and upstream of the dam increase with an increasing anisotropic ratio. These results of the seepage face and reliability index, however, depend on the total head difference between the upstream slope and downstream toe. The difference in seepage face and reliability index is attributed to the different equipotential head with different anisotropic ratios of the dam material.

A Study on multi-channel temperature monitoring for the detection of leakage or seepage in dam body (댐 침투수 탐지를 위한 멀티 채널 온도 모니터링 연구)

  • Oh, Seok-Hoon;Kim, Jung-Yul;Park, Han-Gyu;Kim, Hyoung-Soo;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1211-1218
    • /
    • 2005
  • Temperature variation according to space and time on the inner parts of engineering constructions(e.g.: dam, slope) can be a basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation(e.g.: cracks, defects) could be occurred by various factors. Seepage or leakage of water through these cracks or defects in old dams will directly cause temperature anomaly. Groundwater level also can be easily observed by abrupt change of temperature on the level. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For this, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body.

  • PDF

Study on Seepage Behavior of Concrete Faced Gravel-Fill Dam with Cracked Face Slab (차수벽에 균열이 발생한 표면차수벽형사력댐의 침투거동 연구)

  • Cho, Sung-Eun;Park, Han-Gyu;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.866-873
    • /
    • 2009
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.

  • PDF