• Title/Summary/Keyword: Seeds germination

Search Result 1,221, Processing Time 0.027 seconds

Growth and Bioactive Compound Contents of Various Sprouts Cultivated under Dark and Light Conditions (광 유무에 따른 다양한 새싹 채소의 생육 및 생리활성 화합물의 함량)

  • Lee, Jin-Hui;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.218-229
    • /
    • 2021
  • Recently, as consumers' interest and importance in health care have significantly increased, they prefer natural and organic foods that do not use chemical pesticides. Since sprout vegetables effectively promote health and prevent diseases such as cancer and cardiovascular disease, the consumption of sprout vegetables, a highly functional and safe food, has been increased significantly. This study aimed to investigate the effect of light on the growth and bioactive compounds of seven different sprout vegetables. After sowing the seeds of various sprout vegetables (kale, Chinese kale, broccoli, red cabbage, alfalfa, red radish, and radish), the sprouts were cultivated under light conditions (20℃, RGB 6:1:3, 130 μmol·m-2·s-1, 12 hours photoperiod) and dark condition for 7 days. Sprouts samples were taken at 1-day intervals from 4 to 7 days after treatment. The fresh weight, dry weight, plant height, total phenol content, and antioxidant capacity were measured. Brassica species (kale, Chinese kale, broccoli, red cabbage) and Medicago species (alfalfa) had significantly higher fresh weight values under dark conditions, while the content of bioactive compounds was increased considerably under light conditions. In contrast, the fresh weight of Raphanus genus (red radish, radish) significantly increased under the light condition, but the antioxidant phenolic compounds were significantly higher under the dark state. A negative correlation was observed between the growth and secondary metabolites in various sprout vegetables. This study confirmed the effect of light and dark conditions on different sprout vegetables' growth and nutritional value and emphasizes the importance of harvest time in producing high-quality sprout vegetables.

Optimization of In vitro Cultures for Production of Seedling and Rootstock of Rehmannia glutinosa(Gaertn.) DC. (지황 배양묘 및 종근 생산을 위한 기원검증 및 최적기내배양조건 확립)

  • Kang, Young Min;Lee, Ka Youn;Kim, Mi Sun;Choi, Ji Eun;Moon, Byeong Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.81-93
    • /
    • 2016
  • Rehmannia glutinosa(Gaertn.) DC. is a herbaceous perennial plant and belonging to the Scrophulariaceae and used as roots for medicinal part and purpose. R. glutinosa is and usually used for fresh rehmannia root or prepared rehmannia root. However, it is very difficult to propagate using the seeds because of lack germination so it is propagated using the vegetative method as the rootstock. Currently, propagation and harvesting using the rootstock of R. glutinosa has difficulties about production of the high quality and quantity in R. glutinosa because of root rot disease. To optimize in vitro cultures and to improve the rootstock and seedling of R. glutinosa after morphological and genetical determination, 5 plant culture media (MS, DJ, LS, QL, and WPM) were used in this study then WPM was selected for better growth, for multiplication condition(WPM + IAA 1.0 mg/L + IBA 0.5 mg/L), and for root enlargement condition(WPM + NAA 0.1 mg/L) of R. glutinosa. Based on these results, in vitro seedlings of R. glutinosa were transferred to soil for acclimation with environment adaptation and shown the positive effects about root enlargement and root formation. Therefore, it can be used for high quality of R. glutinosa production and production of the rootstock based on propagation using in vitro seedlings of R. glutinosa.

Sowing Method in Plug Tray for Production of Plug Seedlings of Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. (지황의 공정묘 생산을 위한 플러그 트레이 파종 방법)

  • Jeong Hun Hwang;Eun Won Park;Hee Sung Hwang;So Yeong Hwang;Jin Yu;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.210-216
    • /
    • 2023
  • Conventionally, the seeds of Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. have been directly sown at the field without using the plug seedling method. Plug seedlings have the advantage of promoting germination and convenient transplanting. However, there is little information about propagation of R. glutinosa using the plug seedling method. This study was conducted to investigate the optimal seed rhizome length, diameter, and sowing direction of R. glutinosa for establishing the plug seedling method. Seed rhizome length and diameter were separated by 1, 2, 3 cm and 0.3-0.5, 0.6-1.0, 1.1-1.5 cm, respectively. And seed rhizomes were sown in vertical and horizontal directions. The survival rate in 1 cm length of seed rhizomes was lower than in other treatments. The leaf length, leaf width, number of leaves, SPAD, leaf area, and fresh and dry weights of shoot and roots were the greatest in 3 cm length of seed rhizomes. As the seed rhizome diameter decreased, the growth characteristics of R. glutinosa tended to increase. When R. glutinosa was sown horizontal direction, the leaf length, leaf width, number of leaves, and leaf area were significantly higher than in the vertical direction. In conclusion, when sowing seed rhizome in a plug tray, using a length of 3 cm, a diameter of less than 1 cm, and sowing in a horizontal direction is considered an appropriate sowing method for R. glutinosa.

Occurrence characteristics and management plans of an ecosystem-disturbing plant, Hypochaeris radicata (생태계교란 식물인 서양금혼초의 발생특성과 관리방안)

  • In-Yong Lee;Seung-Hwan Kim;Yong-Ho Lee;Sun-Hee Hong
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.273-282
    • /
    • 2023
  • Hypochaeris radicata, native to Europe and Eurasia, is a perennial plant of the Asteraceae family. In Korea, H. radicata was reported in 1992, mainly in Jeju Island, and gradually spreading to the inland. It overwinters in the form of a rosette and blooms yellow flowers from May to June. H. radicata propagates by seeds and rhizomes. The germination temperature of the seed is 15/20℃ (day/night), and the rhizome forms a new plant at a depth of 2-3cm in the soil. The roots of H. radicata secrete allelochemicals that inhibit the development of other plants. Some use it as a salad or forage substitute but to a limited extent. However, extensive research on ampicillin contained in H. radicata has been conducted, and its anticancer and anti-inflammatory effects have been recognized. There are only a few methods to manage H. radicata both culturally and physically. In orchards, soil treatments such as oxyfluorfen and diclobenil, or nonselective foliar treatments such as glufosinate-ammonium and glyphosate are used. Notably, there are no known biological control agents.

Studies on Early Seedling Establishment and Early Growth Responses of Astragalus membranaceus Bunge with Different Seeding times, Application Conditions, and Green Manure Crops for Developing Organic Agriculture Relating to Cropping System (작부체계 활용 유기재배기술 개발을 위한 녹비작물, 토양투입 조건 및 파종시기에 따른 황기의 입모율과 초기생육 특성 연구)

  • Song, Beom-Heon;Lee, Kyung-A;Chang, Yoon-Kee;Kim, Young-Gook;Ahn, Tae-Jin;Ahn, Young-Sup;Park, Chung-Beom
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.667-673
    • /
    • 2010
  • Organic agriculture of especially medicinal crops has been interested and focused in taking the qualitative and safety agricultural products in order to maintain and improve the health and happiness of people. With respect to the organic agriculture relating to cropping system, objectives of this study were to examine the seedling establishment after seed germination and emergence and to investigate the early seedling growths of Astragalus membranaceus Bunge with treating two green manure crops, hairy vetch of legume and rye of gramineae, two different conditions of green manures, fresh and dry, and different seeding times. When the seeds were planted at once after treating the green manures with the fresh condition into the soil, the ratios of seedling establishment were very poor, less than 10% in hairy vetch and 20% in rye, respectively. They were increased gradually with delaying the seeding times after the treatments. With treating the green manures of dry conditions, the ratios of seedling establishment were up more than 50% in both hairy vetch and rye crops, showing that the damages of seedling establishment were more in hairy vetch than those in rye. The early seedling growths were slower in treating the green manures than those in the control, showing slow growth with fresh green manures compared to the dry. It would be very important and considered more to evaluate and utilize well the seed germination and the seedling establishment in cultivation of the organic agriculture using the green manure crops relating to the cropping system.

Water Uptake, Cotyledon Damage after Imbibition and Hypocotyl Elongation in Soybean with Different Seed Size and Color (콩 종실크기 및 종피색에 따른 침종후 수분흡수특성, 자엽손상 및 배축 신장력의 차이)

  • Park, Keum-Yong;Kim, Seok-Dong;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.331-338
    • /
    • 1994
  • The experiment was conducted to determine if seed size and seed coat color of soybean might be effective in water uptake and cotyledon damage after imbibition, and hypocotyl elongation. Eight soybean cultivars were separated into two classes of large and small seed based on seed weight, and each class included two cultivars with yellow and black seed color, respectively. Small seed size group was superior in water uptake by seed for 24 hour in imbibition at $25^{\circ}C$ , but its differences decreased as soaking time increased. Small seed cultivars germinated faster and had better germination rate than large ones. However, cultivars with black seed coat showed more slow water uptake at initial time and faster germination than yellow seed, but in 24 hour after imbibition, cultivars with black seed coat had higher water uptake rate than yellow seeds. Small seed cultivar group showed no cotyledon damage in imbibition for 24 hour while large seed cultivars were damaged 78% of cotyledon, and black seed showed low cotyledon damage compared to yellow seed. Hypocotyl length was shorter in large seed rather than in small seed, but hypocotyl thickness in large seed was more thick than in small seed. In correlation coefficients, seed coat rate, embryo rate exhibited significantly negative association with seed weight, and the correlation of seed weight with water uptake in 3 hour after soaking was significantly negative, but in 24 hour showed positive correlation.

  • PDF

Evaluation of Growth Inhibition Causes on Perennial Ryegrass(Lolium perennial L.) in Afforesting Area (인공배양토 식생지역에서의 페레니얼 라이그래스 생육저해 원인 평가)

  • Lee, In-Bog;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.212-219
    • /
    • 2004
  • To minimize the danger of soil erosion and settle habitats earlier, afforestation, which vegetates bare slopes, is selected as an environmental recovering technology. Large portions of these areas often are suffered by a bad germination and growth inhibition of sprayed seeds. Afforested materials collected in the normal and damaged sites were not any big difference in chemical characteristics and biological response to ryegrass. But background soil of the damaged site has very low pH (3.6) and high contents of iron and aluminum compared with them of the normal sites. Both germination and root growth of ryegrass were inhibited severely in the water extracts of damaged soils, but not in the water extracts of normal sites. Groundwater collected nearby the damaged sites was very strong acidic (pH 33) and exhibited a high value of electrical conductivity and high contents of iron and aluminum. In the ground water, germinated ryegrass was scarcely grown. In Al standard solution, the root growth of ryegrass was inhibited over 50% in 0.5 mM in pH 3.5-4.5 and in 1.4 mM in pH 5.5, which seems to be related to $Al^{3+}$ activity in solution. In the ferric Fe ($Fe^{3+}$) standard solution, ryegrass growth was inhibited over 50% in the concentration of 14-19 mM in root and 23-25 mM in shoot. This strong tolerance of ryegrass to $Fe^{3+}$ might be concerned with the very low activity of $Fe^{3+}$ at pH 3.5-5.5. In contrast, ryegrass responded very sensitively to ferrous Fe ion ($Fe^{2+}$), especially in root growth: $Fe^{2+}$ concentrations corresponding to 50% growth reduction were 0.3-0.4 mM at pH 3.5-5.5 in roots. This high growth inhibition should be related to the high ion activity of $Fe^{2+}$ irrespective of different pH conditions. In conclusion, low pH and high contents of $Fe^{2+}$ and aluminum seem to be caused by pyrite and be closely related to the growth inhibition of ryegrass seeded in afforested area.

Single Crossing Condition of Miscanthus sacchariflorus and Miscanthus sinensis to Breed Miscanthus x giganteus Cultivar (이질3배체 억새(Miscanthus x giganteus) 품종육성을 위한 물억새(M. sacchariflorus)와 참억새(M. sinensis) 단교배 조건구명)

  • Moon, Youn-Ho;Kim, Kwang-Soo;Lee, Ji-Eun;Kwon, Da-Eun;Kang, Yong-Ku;Cha, Young-Lok
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.509-518
    • /
    • 2019
  • This study was conducted to investigate single crossing condition of M. sacchariflrous and M. sinensis for breeding of M. ${\times}$ giganteus cultivar. Compared with natural day length condition, cultivation in short day length condition shorten days to heading to 18~27 days in both species. Pollen germination ratio of were 75.8% at 6 o'clock in M. sacchariflorus and 51.9% at 7 o'clock in M. sinensis but decreased to below 10% at 8 o'clock in both species. When cut ears immerged in 150 mL of cut-flowers conservation solution and isolated with covering of white non-woven fabric, flowering and pollen dispersal were persisted for 7 days, and the ratio of pollen germination were above 40% for 4 days. The ratio of self-fertilization of both species were below 2.5%, but open pollenation ratio were above 50%. We obtained 437 seeds with experimental single cross of 14 combinations between tetraploid M. sacchariflorus and diploid M. siensis by application of developed single crossing methods. In the single cross, numbers of seed set were different by mother plants. Thus, the newly investigated single crossing condition will be used to breed M. ${\times}$ giganteous cultivar which is sterile and has superior characteristics of biomass yield.

Evaluations of Growth and Forage Quality of Sesbania Accessions Adaptable to Korean Environments (국내적응 세스바니아의 생육특성 및 사료가치 평가)

  • Lee, Chang Min;Kim, Young Jin;Ahn, Sol;Hailegioris, Daniel;Lee, Cheong Ae;Yun, Song-Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.278-286
    • /
    • 2019
  • Sesbania, an annual herb, is known for its high forage value and salt tolerance. It has merits as a forage crop that is adaptable to reclaimed land in the Republic of Korea. Therefore, we collected Sesbania genetic resources from the Republic of Korea and other countries, and conducted experiments to evaluate their potential as a forage crop in Korean climate and soil conditions. In the preliminary experiments, 15 genetic resources which were able to set seeds in Korean environment were selected out of a total of 46 collected genetic resources. Among 15 genetic resources, SL13 was the tallest and it was followed by that of SC04, SR01 and SE07. The accessions with the earliest flowering started flowering 101 days after sowing and set seed in early August. Fifteen accessions were evaluated for their salt tolerance at germination stage based on germination rate and growth of germinated seedlings at 0 mM, 150 mM and 300 mM NaCl concentrations. Five genetic resources like SC04, SL13, SS20, SS24 and SR01 were selected to be tolerant to NaCl treatment. Forage value was evaluated based on crude protein, acid detergent fiber, neutral detergent fiber and in vitro dry matter digestibility. The forage value of leaves was significantly higher than that of stems, and the forage value of the stem was slightly better than that of rice straw. The forage value of leaves of all the genetic resources was higher than grade 1 by the American Forage and Grassland Council grade. Among five selected genetic resources, the relative feed value of SC04 was the highest and it was followed by that of SS20, SL13, SS24 and SR01.

An Optimum Summer Cultivation Sowing Date for Seed Production of Oats (Avena sativa L.) (귀리 종자 생산을 위한 여름 재배의 적정 파종 시기 구명)

  • Park, Jin-Cheon;Kim, Yang-Kil;Yoon, Young-Mi;Choi, Su-Yeon;Park, Jong-Ho;Park, Hyoung-Ho;Ra, Kyungyoon;Park, Tae-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.180-188
    • /
    • 2022
  • This study was conducted to determine the optimal sowing date for seed yield of summer oat (Avena sativa L.) cultivars "Darkhorse (DH)" and "Highspeed (HS)" in Wanju, Jeonbuk province between 2017 and 2018. We investigated seed yield from 4 sowing dates: July 15, July 30, August 15, and August 30. We evaluated the agronomic characteristics of summer oats (DH and HS). We found the heading date of all cultivars to be within 50 days. Delayed sowing resulted in significantly increased plant height for both years and cultivars. There was no significant difference in spike length of DH and HS which ranged from 12.8 to 17.8 cm. The sowing date of July 30 produced a higher number of grains per spike, but this yield differed significantly by year and cultivars. In 2017, the first sowing resulted in the lowest DH yield at 132 kg per 10a, while the second sowing had the highest yield at 227 kg. HS yield was the lowest in the first sowing at 126 kg and the highest in the third sowing at 219 kg. In 2018, DH had the lowest yield from the first sowing at 184 kg per 10a, and the highest from the second sowing at 240 kg, but there was no significant difference between these yields. The first sowing for HS gave the lowest yield at 160 kg, and the second sowing produced the highest at 258 kg. The germination rate of harvested seeds from each sowing date in 2017 and 2018 was found to be higher than 85% and there was no significant difference between the two cultivars in the 2018 germination rate test. Thus, we found the optimal sowing date for summer cultivation of oats for the highest seed yield to be between July 30 (second sowing) and August 15 (third sowing).