• Title/Summary/Keyword: Seedling Period

Search Result 307, Processing Time 0.028 seconds

Optimum germination temperature and seedling root growth characteristics of Camelina (카멜리나 (Camelina sativa Crtz.) 발아 적온 및 발아초기 뿌리생육 특성)

  • Park, Joon Sung;Choi, Young In;Kim, Augustine Yonghwi;Lee, Sang Hyub;Kim, Kyung-Nam;Suh, Mi Chung;Kim, Gi-Jun;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • A genus Camelina has been attracted as a promising oil crop, especially available in drought and marginal conditions. Due to more demands on arable land for bioenergy crops, price of agricultural products has been a challengeable issue. In that respect, development of Camelina crop with higher germination rate and germination energy can be a strategy to secure seedling establishment, nutrient uptake and long vegetative period. In order to be easily available in the field and laboratory conditions, Camelina seed needs to be optimized for its germination temperature. Germination temperature regime was in a range of 8 to $32^{\circ}C$ initially, and consecutively narrowed down to 8 to $20^{\circ}C$. Based on the temperature range, Camelina germinated greater than 96% at $8-16^{\circ}C$ in two weeks after sowing, but germination rate started to decrease at the higher than $24^{\circ}C$ and was significantly low at higher than $32^{\circ}C$. In terms of rapid time to reach the maximum germination rate and greater germination energy, temperature ranged from 12 to $16^{\circ}C$ was found to be desirable for Camelina germination. Although germinationa rate was greater at $16^{\circ}C$, lower temperature close to $12^{\circ}C$ would be favored for the field conditions where greater root growth leading to healthier seedlings and better nutrient or water availability is considerably demanded.

Studies on the Development of Stevia (Stevia rebaudiana Bertoni M.) as a New Sweetness (신감미(新甘味) 자원식물(資源植物) Stevia의 개발(開發)에 관(關)한 연구(硏究))

  • Lee, Jong-Phill;Lee, Sung-Woo;Cho, Soo-Yeul;Kim, Kwang-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.6 no.1
    • /
    • pp.55-59
    • /
    • 1977
  • The consumption of sugar in our diet increased so great that much U. S. dollars are spended to import sugar source from foreign contries. To replace a part of it we adopted mother plant and seeds of the well-known Stevia (Stevia rebaudiana Bertoni M.) originated from south America, from the Agricultural Experimental Station of Hokkaido, Japan, in 1974. In order to determine the growth condition of Stevia in our climate and soil condition, the results of survey and determination were as follows: 1. Germination rate of Stevia was averaged 33.6% at 35 th day after seedling and the maximum germination period was between 5 and 20 days after seedling. 2. The seedling rate of Stevia was about 8%. 3. Establishment of roots of Stevia propagated by cutting method was above 90% but only S-1 strain showed lower rate., 75%. 4. S-2 strain showed the best growth rate that was about 160cm by plant height and it was decreased by the following order : S-4, S-3, S-1, S-6 and S-5 strains. 5. S-4 strain resulted in 45 branches that was the highest number among strains tested and S-2 strain was the next. 6. The content of sweetening compound of Stevia, stevioside, was 5.3% in S-1, S-2, S-5 and S-4 strains but S-3 and $S^*$-6 strains were relatively low content, 4.9%. From the above results we obtained Stevia could be propagated by cutting method and the growth conditions including plant height, number of branches and content of stevioside were relatively better in S-2 and S-4 strains that were differentiated by the shape of leaf.

  • PDF

Seedling Emergence of Dry -seeded Rice under Different Sowing Depths and Irrigation Regimes (건답직파에서 파종심도와 관개조건에 따른 벼 품종들의 출아특성)

  • 이변우;명을재
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.59-68
    • /
    • 1995
  • Investigated were the relationships between plumule elongation characteristics and seedling emergence of 46 varieties including native, improved and red rice varieties of Korea, and varieties from U.S.A., Italy, India, Japan under 1, 3, and 5cm deep sowing with irrigated and non-irrigated condition. Experiments were carried out in paddy field of sandy loam. There was heavy shower of 19.2mm on the next day of seeding and thereafter, clear and dry weather continued during the experiment period. Soil temperature averaged over 30 days after seeding was $16.4^{\circ}C$ at 3cm depth. Soil hardness increased linearly up to 2.5kg /$cm^2$ on the 14th day after seeding, on which date irrigated plot was irrigated through furrow, and up to 4kg / $cm^2$ on the 28th day in non-irrigated plot. Soil hardness dropped near to 0kg /$cm^2$ after irrigation and developed up to 2.5kg /$cm^2$ again by 28 days after seeding. Seedling emergence was higher in irrigated plots than non-irrigated plots at all seeding depths. Korean improved varieties were substantially lower in seedling emergence under non-irrigated condition of 1 cm deep sowing than those under irrigated condition. This poor seedling emergence resulted mainly from delayed emergence by exposing them to greater soil strength. Percent seedling emergence under irrigated and non-irrigated condition showed signifi-cant correlations at 3 and 5 cm deep sowing. Korean improved varieties belonged to the group of poor seedling emergence, and I taliconaverneco, Chinsura Boro and Weld Pally to best group under both irrigation conditions at 3 and 5cm deep sowing. Seedling emergence showed highly signifi-cant positive correlation with the plumule length of mesocotyl + 1st internode + incomplete leaf and of mesocotyl+coleoptile. Among the characters constituting plumule length, incomplete leaf length showed greatest positive correlation followed by coleoptile and mesocotyl under irrigated condition at 3 and 5 cm deep sowing, and highest correlation with mesocotyllength followed by first internode and incomplete leaf under non-irrigated condition. Days to 50% seedling emergence at 1 cm deep sowing with irrigation showed great varietal variation of 10 to 30 days, and showed high significant negative correlations with percent seedling emergence under both irrigation conditions except for 1 cm deep sowing with irrigation, Days to seedling emergence revealed sig-nificant negative correlations with plumule characters except 2nd internode, showing highest cor-relation with incomplete leaf length.

  • PDF

On the Seedling Time of the Mangrove Oyster, Crassostrea rhizophorae, in the Lagoon of Cocineta in Venezuela (Venezuela국 Cocineta호산 Mangrove oyster의 채묘시기)

  • YOO Sung Kyoo;CHO Chang Hwan;YOO Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.281-285
    • /
    • 1976
  • An investigation on the breeding time of the Mangrove oyster, Crassostrea rhizaphorae, in the lagoon of Cocineta which is located in the northwestern part of Venezuela was carried out from February through May in 1976. Surface water temperature was high, over $25^{\circ}C$ and specific gravity was around 1.0258. Transparency to water depth varied between 29 and $80\%$. The range of water content of the oysters increased from February through May. However, the averge monthly range of water content varied only slightly from 80.67 to $82.25\%$. From the numbers of matured planktonic larvae together with total numbers of planktonic larvae found, we may assume that the best seedling period is from late April through early May. We may also assume that the best area is around stations 4 and 3, station 3 being slightly better than station 4.

  • PDF

EFFECTS OF TEMPERATURE AND DURATION OF POST-IRRADIATION STORAGE ON SEEDLING HEIGHT OF WHEAT (감마선과 속중성자를 조사한 밀종자의 저장기간과 저장온도가 발아후 유묘생장에 미치는 영향)

  • Chang-Yawl Harn;Chi-Moon Kim;Young-Sang Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.10
    • /
    • pp.73-77
    • /
    • 1971
  • The experiment was carried out to investigate post-irradiation storage effect which was related to temperature(i.e. at 2$^{\circ}C$, 17$^{\circ}C$ and 4$0^{\circ}C$) on wheat seeds; Weibull's Svenno, treated with gamma-ray and fast neutron. Results obtained showed that the seedling height in both radiation sources was decreased with prolongation of storage period, especially when the seeds were treated with high dosage and stored at high temperature(4$0^{\circ}C$). The results of this trial, however, showed that storage effect was influenced by irradiation dose, temperature and storage time.

  • PDF

Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice (논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I))

  • 류한열;김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF

The Effect of Dredged Soil Improvement on Soil Chemical Conditions and Plant Growth at the Slope of Saemangeum Sea Dike

  • Park, Chanwoo;Koo, Namin;Kwon, Jino;Lim, Joo-Hoon;Jeong, Yong-Ho;Kim, Jung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • This study was conducted to determine the changes in soil chemical properties and the growth of seedling according to the different dredged soil improving methods at slope of Saemangeum sea dike. Undersea dredged soil was improved by five different methods. Seedlings of Ulmus davidiana var. japonica, Chionanthus retusa, Celtis sinensis, and Pinus thunbergii were planted after 9 month of experience site installation, then soil pH, NaCl concentration in soil, soil organic matter (SOM), and survival rate and height of seedling was measured. Initial soil pH was highest in the control plot but it decreased to the similar level with other soil improving plots after 35 months. There were no differences in NaCl concentration between the control and soil improving plots, and it showed decreasing tendency during the study period. In the control plot, initial SOM was lowest among that of other plots during the study period. The survival rate of 36 months after planting of P. thunbergii was highest among the species. The gap of the tree growth of P. thunbergii between the control plot and the soil improving plots was small, however, other species showed relatively higher tree height in the soil improving plots than the control plots. Creation forest with P. thunbergii might be a cost effective afforestation in coastal reclaimed land since it rarely needs additional improvement of dredged soil.

Germination Characteristics of PEG Priming Seed in Barley (Hordeum vulgare L.) (PEG로 프라이밍 된 보리(Hordeum vulgare L.)종자의 발아특성)

  • 이성춘;박문수;배창휴
    • Korean Journal of Plant Resources
    • /
    • v.15 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • These experiments were conducted to evaluate the variability of seed germination, and seedling growth of PEG priming barley. The average germination percentage(AGP) of PEG priming seed was higher than control, but those were low with extend the treatment period. The AGP of washing seed after PEG priming was higher than unwashed seed, and that of redried seed after priming was lower than control. The germination time of priming seed was short compare to control seed, and that was prolonged with extend the priming period, and that of washing seed after priming was shortening, and that of redried seed after priming was prolonging. The emergence percentage(EP) of priming seed was higher than control, and the emergence time was shortest in 50% field moisture capacity soil. The seedling and root length of priming seed was shorter than control.

Lilium longiflorum 'Charm' as a F1 Hybrid for Pot Plant (종자번식 일대잡종 분화용 나팔나리(Lilium longiflorum) 'Charm' 육성)

  • Song, Cheon Young
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.4
    • /
    • pp.304-308
    • /
    • 2008
  • Lilium longiflorum 'Charm' as a $F_1$ hybrid cultivar was released by crossing inbred line '$L_2$-14' and '$L_2$-21' which were obtained from 5 self crosses originated from 'Nellie White', 'Ace' and 'Hinomoto'. The growth and flowering characteristics were evaluated in a greenhouse maintained at a minimum of $13^{\circ}C$ at night during winter in 2006 and 2007. The flower of 'Charm' is white color and horizontal-facing. The flower number of a plant and its diameter is 7.4 and 16.5 cm with 24.5 ornamental(flowering) days. The plant height is 60.3 cm with 70.3 number of leaves. The stem diameter and internode length is 1.2 cm and 1.1 cm, respectively, meaning the plant is compact and sturdy. And the number of seed per a capsule is 251.1. The results of these evaluation, therefore, suggest that seedling Lilium longiflorum 'Charm' can be used as a pot plant due to its short stems, many number of flowers per plant, long ornamental period, strong growth habit with many leaves and thick stem diameter.

Source-Sink Relations in North American Ginseng Seedlings as Influenced by Leaflet Removal

  • T. A., John
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.337-340
    • /
    • 2008
  • Seedlings of North American ginseng (Panax quinquefolius L.) were grown to full canopy establishment and then leaflet or leaf removal at different times applied to determine the effects on plant growth and performance. Leaf removal at 47, 57, 69 and 78 days after seeding resulted in 82.1, 59.8, 41.3 and 29.8% reduction, respectively, in root dry matter (economic yield) ; this indicates that leaf removal during the early root growth period causes greatest reduction in root yield. Removal of 1, 2, and 3 leaflets at 42, 52, 62 and 70 days from seeding reduced root weight at harvest (80 days from seeding) linearly, particularly at earlier removal dates. The perennating bud formed on all roots and was not influenced by treatment. This would suggest that if leaf loss occurs after canopy establishment the plant will re-grow the next year after the obligatory dormancy period.