• Title/Summary/Keyword: Seed storage protein

Search Result 103, Processing Time 0.02 seconds

Proteomic Approach of the Protein Profiles during Seed Maturation in Common Buckwheat (Fagopyrum esculentum Moench.)

  • Park, Min-Hwa;Shin, Dong-Hoon;Han, Myoung-Hae;Yun, Young-Ho;Bae, Jeong-Sook;Lee, Yun-Sang;Chung, Keun-Yook;Lee, Moon-Soon;Woo, Sun-Hee
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.227-235
    • /
    • 2009
  • Single seeds of common buckwheat cultivar Suwon No. 1 when subjected to SDS-PAGE revealed very high polymorphism. High variation existed for protein or protein subunits with molecular weight 54-47kDa, 45-25kDa and 16-11kDa. The electrophoregram showed variation for globulin as well as other protein fractions. About 300 proteins were separated by two-dimensional electrophoresis in common buckwheat (Fagopyrum esculentum Moench.) seed. Seed maturation is a dynamic and temporally regulated phase of seed development that determines the composition of storage proteins reserves in mature seeds. Buckwheat seeds from 5, 10, 15, 20, and 25 days after pollination and matured stage were used for the analysis. This led to the establishment of high-resolution proteome reference maps, expression profiles of 48 spots. It was identified 48 proteins from MALDI-TOF/MS analysis of wild buckwheat seed storage proteins. The 48 proteins were found identical or similar to those of proteins reported in buckwheat and other plants; it is belonging to 9 major functional categories including seed storage proteins, stress/defense response, protein synthesis, photosynthesis, allergy proteins, amino acid, enzyme, metabolism, and miscellaneous. It appears that the major allergenic storage protein separated played the important role in buckwheat breeding and biochemical characterization.

Effects of Sulfur Nutritional Forms on Accumulation of Seed Storage Proteins in Soybean (Glycine max)

  • / N
    • Korean Journal of Plant Resources
    • /
    • v.10 no.3
    • /
    • pp.221-226
    • /
    • 1997
  • Improvement of seed protein quality might be an essential issus in soybean and would give more profit directly to both farmers and users. This study was carried out to investigate the effects of reduced-S form(s) on seed storage protein components in soybean during seed filling stages. The reduced-S forms during seed fill were sodium thiosulfate, sodium sulfite, sodium sulfide, thioaceteat, $\beta$-mercaptoethanol, thiourea, thiamine-HCI, L-cysteine, L-cystine, and L-methionine. Seed storage protein concentration did not appear to be affected by any reduced-S forms. However, glycinin and $\beta$-conglycinin concentration seemed to be changed greatly by L-methionine. This resulted in the increase in the 11S/7S ratio(3.58). Among the $\beta$-conglycinin, $\beta$-subunit was not accumulated at all. $\alpha$-subunit concentration appeared to be decreased and $\alpha'$-subunit concentration was not altered in comparison with sulfate control. Also, $\beta$-conglycine concentration, especially $\beta$-subunit concentration, tended to be decreased with L-cystine treatment, resulting in an increase in the 11S/7S ratio(1.83). The glycinin concentration tended to be increased at the expense of the decrease in the $\beta$-conglycinin concentration. Therefore, it is suggested that enhancing soybean protein quality would be achieved by improving metabolic pathways of S assimilation in soybean plants during seed filling period under sulfate-sufficient condition.

  • PDF

Interrelation between N and S Nutrition on Accumulation of Storage Protein in Soybean Seed

  • Paek, Nam-Chon;Richard Shibles
    • Plant Resources
    • /
    • v.1 no.2
    • /
    • pp.113-120
    • /
    • 1998
  • Soybean is an important crop because its seed has very high protein relative to others. The quality of soy protein is limited by the concentration of the sulfur-containing amino acids in the amino acid profile. Among the supply of various forms of 0.4mM sulfur as S nutrition during seed fill. only 0.4mM L-methionine can inhibit ${\beta}$-subunit synthesis completely and produce the highest glycinin-containing seeds. Compared to 0.4mM sulfate control, seeds supplied by 0.4mM L-methionine have lower ${\alpha}$-, no ${\beta}$-subunit, and highly increased glycinin without altering total protein concentration. Supply of 0.2mM cystine (0.4mM S) did not affect the accumulative pattern of seed storage protein (SSP) subunits. In the supply of L-methionine, 0.2mM treatment showed higher glycinin in seeds but 0.05mM resulted in lower glycinin than tile sulfate control. The relative abundance of ${\alpha}^`$-subunit was not altered by any N or S nutrition. Under 5mM nitrogen, protein concentration was increased about 3-5% by substituting ammonia for nitrate during seed fill independent of nutrition. The increase resulted in the only increase of 7S protein, mainly ${\beta}$-subunit. Our data suggest that the regulatory system of SSP genes responds to the balance between N and S assimilates supplied from mother plant. and controls the di fferential synthesis of their subunits for the maximum protein accumulation in developing soybean seed.

  • PDF

Seed Protein Quality of Soybean Mutants (콩 돌연변이 계통의 단백질 특성)

  • Moo Hee, Yang;Joe W, Burton
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.3
    • /
    • pp.278-284
    • /
    • 1994
  • The sulfur amino acid composition in soybean (Glycine max L.) seeds may be an essential characteristic of new cultivars for some animal diets. Variation in seed storage protein among genotypes might make it possible to improve the quality of seed protein by genetically altering seed storage protein composition through plant breeding. This study was carried out to determine if mutant strains have potential for improving seed protein quality in soybean. Ten mutant strains had a distinct characteristic of seed storage protein subunits. Among the mutant strains, the sulfur amino acid compositions(methionine plus cystein) of Keburi(P.I.417016), Keburi(P.I.506817), and P.I.54608-1 were relatively higher than those of the others and were 1.9, 2.1, and 1.8%, repectively, which might be due to low levels of ${\alpha}$, ${\alpha}$', and ${\beta}$ subunits of 7S protein. Therefore, it is concluded that the mutant strains, Keburi(P.I.417016), Keburi(P.I.506817), and P.I.54608-1 appear to be potential materials for a breeding program for improving sulfur amino acid composition, and the others also seem to be possible breeding materials for other uses.

  • PDF

Changes of Chemical Components During Seed Development in Black Soybean (Glycine max L.)

  • Shim Sang In;Kang Byeung Hoa
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.331-336
    • /
    • 2004
  • Changes in the level of metabolites in leaves and pods were examined with respect to the seed chemical composition in black soybean. There was no further increase in pod length after 42 days after flowering (DAF). Pod weight, however, persistently increase until 73 DAF, thereafter the weight was slightly lowered. The seed storage protein, however, increased drastically as the increasing rate of pod weight was lessened at 61 DAF. The accumulation of seed storage proteins was occurred conspicuously as the increasing rate of pod weight was slowed down. The chlorophyll content both in leaves and pods was drastically decreased after 50 DAF. The beginning of drastic reduction in chlorophyll content was occurred concomitantly with the reduction of soluble protein content in leaves. The sugar content in leaves showed similar tendency with chlorophyll and soluble protein content. The starch level in leaves, however, showed different changing pattern during seed development. The starch content in leaves was increased persistently until 66 DAF, thereafter the content was decreased drastically to about $55\%$ of maximal value at 66 DAF. Total phenolics content in leaves and the anthocyanins content in seeds were stable without noticeable increase until 66 DAF. The contents were increased dramatically after 66 DAF showing the synchronized pattern with the decrease in starch level in leaves. The levels of the selected metabolites in leaf and seed suggested that the accumulation of chemical components of black soybean seed is launched actively at 66 DAF. The profile of storage proteins was nearly completed at 61 DAF because there was no large difference in densitometric intensity among protein subunits after 61 DAF. In soybean, chemical maturation of seed begins around 61 to 66 DAF at which most metabolites in vegetative parts are decreased and remobilized into maturing seeds.

Immunocytochemical Localization of Storage Protein in Pea (Pisum sativum) Cotyledon

  • Yu, Seong-Cheol;Lee, Chang-Seob;Kim, Woo-Kap
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.123-126
    • /
    • 1996
  • The pattern of seed storage protein, vicilin, deposition and site of intracellular localization was examined in cotyledon cells of pea (Pisum sativum) seed using the immunocytochemical methods. The vicilin was confined to the cisternae fo the rough endoplasmic reticulum and dictyosome as well as protein granules newly formed in rough endoplasmic reticulum. Vacuolar protein deposites and protein bodies were also labelled by gold particles. After small protein bodies were formed in the rough endoplasmic reticulum, they were transported to large protein bodies and then fused together. Electron dense protein granule, elaborated in the dictyosome, appears to be transported from dictyosome to protein body. A few unlabelled protein granules seem to be accumulated in other type of proteins than vicilin.

  • PDF

Terminal Dilation and Transformation of the Protein-filled ER to Form Protein Bodies in Pea (Pisum sativum L. var, exzellenz) Cotyledons (완두 자엽에서 소포체 말단의 팽창에 의한 단백과립 발달)

  • Jeong, Byung-Kap
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.499-509
    • /
    • 1999
  • Accumulations of the storage proteins in protein storage vacuole and the differentiation of protein bodies from protein-filled ER in developing pea cotyledons have been investigated using conventional and immunoelectron microscopy. To improve the fixation quality, single cells separated enzymatically from sliced cotyledons were used. At early stages of seed development osmiophilic protein accumulates in rER lumen were observed quite often. This protein-filled ER cisternae were differentiated into cytoplasmic protein bodies at late stage by the process called terminal dilations which have been considered a principal route of the formation of cytoplasmic protein bodies somewhat later in seed maturation. Immunocytochemical labellings of the vicilin and legumin show that presence of vicilin on both of the cytoplasmic PB and PD, but limited presence of legumin only on the cytoplasmic PB at intermediate stage of seed development. Immunogold labellings of Bip, ER retention protein, were observed on the inner periphery of protein deposits in protein storage vacuole. This result was regarded that Bip can recognize and retrieve misfolded protein during active accumulation of storage protein to the PD in PSV.

  • PDF

An Immunocytochemical Study on Storage Proteins of Ginseng Seed - Tris Buffer Soluble Protein - (인삼 종자의 저장단백질에 관한 면역 세포화학적 연구 - Tris 완충액 가용성 단백질 -)

  • Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.74-84
    • /
    • 1989
  • Buffer soluble storage proteins of ginseng seed have been localized by electron microscopy using post-embedding immunocytochemical gold labelling technique. Major components of the storage proteins were revealed to be storage protein-1($SP_{1}$, MW 160,000) and storage protein-2($SP_{2}$, MW 70,000). Both of the storage proteins are glycoproteins. Anti-$SP_{1}$ and anti-$SP_{2}$ from rabbit, against $SP_1$ and $SP_2$, respectively, reacted on sections of ginseng endosperm tissue embedded in Spurr's epoxy resin. The rabbit antibodies were visualized indirectly by reaction with protein A labelled with colloidal gold. Both storage proteins were found to be accumulated together in the same protein bodies, but their relative contents are not equal.

  • PDF

A Systematic Proteome Study of Seed Storage Proteins from Two Soybean Genotypes

  • Cho, Seong-Woo;Kwon, Soo-Jeong;Roy, Swapan Kumar;Kim, Hong-Sig;Lee, Chul-Won;Woo, Sun Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.359-363
    • /
    • 2014
  • Soybean seed is a good source of plant protein in human consumables such as baby formula and protein concentrate. The seeds contain an abundance of storage proteins, namely ${\beta}$-conglycin and glycinin that account for ~ 70-80% of the total seed protein content. Proteome profiling has been proved to be an efficient way that can help us to investigate the seed storage proteins. In the present study, the seeds were removed from the pods and the cotylendonary tissues were separated from the testa for proteome analysis in order to investigate the seed storage proteins. A systematic proteome profiling was conducted through one-dimensional gel electrophoresis followed by MALDI-TOF-TOF mass spectrometry in the seeds (cotyledonary tissue) of soybean genotypes. Two dimensional gels stained with CBB, a total of 10 proteins were identified and analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. A total of ten proteins such as glycinin Gy4 precursor, glycinin G3 precursor, glycinin G1 precursor, glycinin chain A2B1a precursor, glycinin chain A2B1a precursor were identified in our investigation. However, the glycinin subunit may be considered to play important roles in soybean breeding and biochemical characterization. In addition, the improved technique will be useful to dissect the genetic control of glycinin expression in soybean.

Systematic Studies of 12S Seed Storage Protein Accumulation and Degradation Patterns during Arabidopsis Seed Maturation and Early Seedling Germination Stages

  • Li, Qing;Wang, Bai-Chen;Xu, Yu;Zhu, Yu-Xian
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.373-381
    • /
    • 2007
  • Seed storage proteins (SSPs) are important for seed germination and early seedling growth. We studied the accumulation and degradation profiles of four major Arabidopsis 12S SSPs using a 2-DE scheme combined with mass spectrometric methods. On the 2-DE map of 23 dpa (days post anthesis) siliques, 48 protein spots were identified as putative full-length or partial $\alpha$, $\delta$ subunits. Only 9 of them were found in 12 dpa siliques with none in younger than 8 dpa siliques, indicating that the accumulation of 12S SSPs started after the completion of cell elongation processes both in siliques and in developing seeds. The length and strength of transcription activity for each gene determined the final contents of respective SSP. At the beginning of imbibition, 68 SSP spots were identified while only 2 spots were found at the end of the 4 d germination period, with $\alpha$, subunits degraded more rapidly than the $\alpha$ subunits. The CRC $\delta$ subunit was found to degrade from its C-terminus with conserved sequence motifs. Our data provide an important basis for understanding the nutritional value of developing plant seeds and may serve as a useful platform for other species.