• Title/Summary/Keyword: Seed Storage Protein

Search Result 103, Processing Time 0.032 seconds

DNA Information Hiding Method for DNA Data Storage (DNA 데이터 저장을 위한 DNA 정보 은닉 기법)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.118-127
    • /
    • 2014
  • DNA data storage refers to any technique for storing massive digital data in base sequence of DNA and has been recognized as the future storage medium recently. This paper presents an information hiding method for DNA data storage that the massive data is hidden in non-coding strand based on DNA steganography. Our method maps the encrypted data to the data base sequence using the numerical mapping table and then hides it in the non-coding strand using the key that consists of the seed and sector length. Therefore, our method can preserve the protein, extract the hidden data without the knowledge of host DNA sequence, and detect the position of mutation error. Experimental results verify that our method has more high data capacity than conventional methods and also detects the positions of mutation errors by the parity bases.

Influence of Seed-filling Temperature on the Seed Quality and Water Soaking Properties of Soybean (등숙온도가 콩의 품질 및 수분흡수 특성에 미치는 영향)

  • Jung, Gun-Ho;Kwon, Young-Up;Lee, Jae-Eun;Kim, Yul-Ho;Kim, Dae-Wook;Son, Beom-Young;Kim, Jung-Tae;Lee, Jin-Seok;Shin, Seong-Hyu;Baek, Seong-Bum;Lee, Byung-Moo;Chung, Ill-Min;Kim, Sun-Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.308-318
    • /
    • 2013
  • Korean soybean varieties, 'Seonyu' and 'Hwangkeum' were planted in 2012, and three temperature gradient, Tc($19.8^{\circ}C$, ambient temperatured), $Tc+1.7^{\circ}C$, and $Tc+2.5^{\circ}C$, were artificially created by controlling the green house system during seed filling period. Mature seeds that developed under these conditions were analyzed for variances in physicochemical properties. The 100-seed weight and seed-coat ratio of soybean were decreased, but small seed rate was increased by high temperature during seed filling period. Protein content was increased, but oil content was decreased significantly with increasing the seed filling temperature. The decrement of carbon to nitrogen ratio (C/N), and the increment of monosaccharide, fructose and sucrose, in seeds explained that carbohydrate assimilation during seed filling was restricted by high temperature. Rapid increments of seed volume and weight were observed in the seeds of high seed filling temperature, but as soaking time increased the highest values were observed in the seeds of ambient seed filling temperature. The 100-seed weight and seed-coat ratio of soybean were closely related not only to the increment of soaking volume and weight, but also the increments of total dissolved solids (TDS) and electro conductivity (EC). Whereas protein content and C/N ratio showed less relationship with the soaking properties, but they had a positive correlation with TDS and EC. From the results, it was considered that high values of TDS and EC in the seeds of high temperature were mainly due to the incomplete conversion of assimilates into storage compounds. However, sugar content showed less influence on the soaking properties and the values of TDS and EC.

Plant Molecular Farming Using Oleosin Partitioning Technology in Oilseeds

  • Moloney, Maurice-M.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.197-201
    • /
    • 1997
  • Plant seed oil-bodies or oleosomes ate the repository of the neutral lipid stored in seeds. These organelles in many oilseeds may comprise half of the total cellular volume. Oleosomes are surrounded by a half-unit membrane of phospholipid into which are embedded proteins called oleosins. Oleosins are present at high density on the oil-body surface and after storage proteins comprise the most abundant proteins in oilseeds. Oleosins are specifically targeted and anchored to oil-bodies after co-translation on the ER. It has been shown that the amino-acid sequences responsible for this unique targeting reside primarily in the central hydrophobic tore of the oleosin polypeptide. In addition, a signal-like sequence is found near the junction of the hydrophobic domain and ann N-terminal hydrophilic / amphipathic domain. This "signal" which is uncleaved is also essential for correct targeting. Oil-bodies and their associated oleosins may be recovered by floatation centrifugation of aqueous seed extracts. This simple partitioning step results in a dramatic enrichment for oleosins in the oil-body fraction. In the light of these properties, we reasoned that it would be feasible to create fusion proteins on oil-bodies comprising oleosins and an additional valuable protein of pharmaceutical or industrial interest. It was further postulated that if these proteins were displayed on the outer surface of oil-bodies, it would be possible to release them from the purified oil-bodies using chemical or proteolytic cleavage. This could result in a simple means of recovering high-value protein from seeds at a significant (i.e. commercial) scale. This procedure has been successfully reduced to practice for a wide variety of proteins of therapeutic, industrial and food no. The utillity of the method will be discussed using a blood anticoagulant, hirudin, and industrial enzymes as key examples.

  • PDF

Effects of Water Potential on Germination and Chemical Composition of Soybean, Peanut and Corn Seeds (수분포텐셜이 콩, 땅콩 및 옥수수 종자의 발아와 화학성분에 미치는 영향)

  • 성락춘;김형곤;박세준
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.569-577
    • /
    • 1996
  • This experiment was conducted to investigate the effects of water potential by PEG treatment on germination and quantitative changes of seed storage reserves of soybean [Glycine max (L.) Merr.], peanut(Arachjs hypogaea L.) and corn(Zea may L.). Water potential of PEG(M.W. 10, 000) solution as germination media was 0.0, -0.2, and -0.5MPa. The highest moisture uptake rate was found in soybean seedlings among three crops. Moisture content of seedlings of three crops was decreased at -0.5MPa treatment and seedling length was delayed with water potential decrement. As water potential decreased, decreasing rate of protein content of the seedlings compared to seeds was declined in soybean and peanut. Decreasing rate of starch content of the seedlings was decreased in corn at -0.5MPa treatment. Increasing rate of sugar content of the seedlings was markedly decreased at -0.5MPa treatment in all crops. The results of this experiment showed that availability of moisture and synthesis of sugar for seed germination were influenced below -0.5MPa water potential in three crops.

  • PDF

Expression of Nutritionally Well-balanced Protein, AmA1, in Saccharomyces cerevisiae

  • Kim, Tae-Geum;Kim, Ju;Kim, Dae-Hyuk;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.173-178
    • /
    • 2001
  • Food yeast, Saccharomyces cerevisiae, is a safe organism with a long history of use for the production of biomass rich in high quality proteins and vitamins. AmA1, a seed storage albumin from Amaranthus hypochondriacus, has a well-balanced amino acid composition and high levels of essential amino acids and offers the possibility of further improving food animal feed additives. In order to find an effective means of expressing AmA1 in yeast, the gene was cloned into an episomal shuttle vector. Four different promoters were tested: the glyceraldehyde-3-phosphate dehydrogenase promoter, galactose dehydrogenase 10 promoter, alcohol dehydrogenase II promoter, and a hybrid ADH2-GPD promoter. The recombinant AmA1 genes were then introduced into the yeast Saccharomyces cerevisiae 2805. Northern and Western blot analyses of the yeast under appropriate conditions revealed that AmA1 was expressed by all four promoters at varying levels. An enzyme-linked immunosorbent assay demonstrated that the amount of AmA1 protein in the recombinant yeast was 1.3-4.3% of the total soluble proteins. The highest expression level was obtained from the hybrid ADH2-GPD promoter.

  • PDF

Transcript Analysis of Wheat WAS-2 Gene Family under High Temperature Stress during Ripening Period

  • Ko, Chan Seop;Kim, Jin-Baek;Hong, Min Jeong;Kim, Kyeong Hoon;Seo, Yong Weon
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.363-380
    • /
    • 2018
  • Wheat is frequently exposed to high temperature during anthesis and ripening period, which resulted in yield loss and detrimental end-use-quality. The transcriptome analysis of wheat under high temperature stress during the early stage of the grain filling period was undertaken. Three expression patterns of differentially expressed genes (DEGs) during grain filling period were identified. The DEGs of seed storage protein and starch-branching enzyme showed continuous increases in their expressions during high temperature stress, as well as during the recovery period. The activities of the enzymes responsible for the elimination of antioxidants were significantly affected by exposure to high temperature stress. Only the WAS-2 family genes showed increased transcription levels under high temperature stress in dehulled spikelets. The relative transcription levels for sub-genome specific WAS-2 genes suggested that WAS-2 genes reacted with over-expression under high temperature stress and decreased back to normal expression during recovery. We propose the role of WAS-2 as a protective mechanism during the stage of grain development under high temperature in spikelets.

Effect of Polyphenol Oxidase Activity on Discoloration of Noodle Dough Sheet Prepared from Korean Wheats

  • Kang, Chon-Sik;Cheong, Young-Keun;Kim, Sun-Lim;Kim, Dae-Ki;Kim, Jung-Gon;Park, Chul-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.187-195
    • /
    • 2008
  • Polyphenol oxidase (PPO) is implicated in discoloration of white salted noodles and other wheat based foods. PPO activity was evaluated to determine the effect on discoloration of noodle dough sheets prepared from 25 Korean wheat flours during storage and to screen experimental lines with low PPO activity in 52 Korean wheats. PPO activity was assayed with whole-seed and performed with L-dihydroxyphenylalanine (L-DOPA) as substrates. Absorbance by L-DOPA assay of 25 Korean wheats was from 0.285 to 1.368 at 475 nm. PPO activity was significantly related with grain characteristics, including 1000-kernel weight and grain colors. In flour characteristics, PPO activity positively correlated with ash and protein content (r = 0.658, P < 0.001 and r = 0.424, P < 0.05, respectively) and negatively correlated with $L^*$ value of flour (r = 0.412, P < 0.05). In the changes of color of noodle dough sheet, $L^*$ and $b^*$ values consistently decreased and $a^*$ value increased during storage. PPO activity negatively correlated with $L^*$ value of noodle dough sheet during storage (r = 0.566, P < 0.01 at 2 hr, r = 0.547, P < 0.01 at 24 hr, and r = 0.509, P < 0.01 at 48 hr). But, no significant relationship was found in between PPO activity, $a^*$ and $b^*$ values during storage. The 52 Korean wheat lines examined in this study were divided into 3 different groups, low (< 0.500), medium (0.501-0.999) and high level (> 1.000), on the basis of the level of PPO activity. Twenty two Korean wheat lines showed low level of PPO activity and Suwon 252, 277 and 280 showed lower PPO activity (< 0.200) than others.

Synthetic Seed Development and Production for Industrialization of Eastern Bracken (고사리 산업화를 위한 인공종자 개발 및 생산)

  • Bo Kook Jang;Ju Sung Cho;Cheol Hee Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.11-11
    • /
    • 2021
  • Ferns have been consumed as food in many countries for centuries. As rich sources of protein, fiber, minerals, vitamins, essential amino acids, and fatty acids, ferns provide important nutrients to humans. Eastern bracken (Pteridium aquilinum var. latiusculum (Desv.) Underw. ex A. Heller) is the most popular edible fern in South Korea where, additionally, it has long been used as an edible wild leaf vegetable. Recently, the production of eastern brackens in South Korea (2018) has reached 14,032 tons, for an annual revenue of 83.5 billion won, and even more eastern brackens are marketed if imports are taken into account as well. Most of the common ferns can be propagated using spores. However, fern farmers cultivate seedlings through traditional propagation methods, such as root pruning or rhizome division. These propagation methods exhibit limitations in forming roots and growing-points and are labor intensive. Quality seedlings of eastern bracken can be obtained through spore propagation, but the spores are fine and difficult to handle in the field. In addition, it would require appropriate environmental control. The production of synthetic seeds using encapsulation technology is easy to establish and it can be used to achieve high productivity at low cost. Synthetic seeds contain explants embedded into a seed foam, and they overcome the limitations of micropropagation and offer the possibility of using plug seedlings. Synthetic seed matrix, such as sodium alginate, has the advantages of low cost, low toxicity, and gel stability. The present study aimed to develop and produce synthetic seeds for the commercial exploitation of eastern bracken. Furthermore, we verified spore germination and the extent of gametophyte and sporophyte development achieved with our new synthetic seeds, whose production was intended to solve current problems with the handling, storage, and transportation of eastern bracken.

  • PDF

Development of Proteomics-based Biomarkers for 4 Korean Cultivars of Sorghum Seeds (Sorghum bicolor (L.) Moench) (국내 수수 종자 분석을 위한 프로테오믹스-기반 바이오마커 개발)

  • Kim, Jin Yeong;Lee, Su Ji;Ha, Tae Joung;Park, Ki Do;Lee, Byung Won;Kim, Sang Gon;Kim, Yong Chul;Choi, In Soo;Kim, Sun Tae
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • BACKGROUND: Sorghum (Sorghum bicolor (L.) Moench) ranks as the 6th most planted crop in the world behind wheat, rice, maize, soybean, and barley. The objective of this study was to identify bio-marker among sorghum cultivars using proteomics approach such as two-dimensional polyacrylamide gel electrophoresis (2-DE) coupled with mass spectrometry (MS). METHODS AND RESULTS: Proteins were extracted from sorghum seed, and separated by 2-DE. Total 652 spots were detected from 4 different sorghum seed after staining of 2-DE with colloidal Coomassie brilliant blue (CBB). Among them, 8 spots were differentially expressed and were identified using MALDI-TOF/TOF mass spectrometry. They were involved in RNA metabolism (spot1, spot 4), heat shock proteins (HSPs, spot 2), storage proteins (spot 3, spot 5, and spot 6), and redox related proteins (spot 8). Eight of these proteins were highly up-regulated in Whinchalsusu (WCS). The HSPs, Cupin family protein, and Globulin were specifically accumulated in WCS. The DEAD-box helicase was expressed in 3 cultivars except for WCS. Ribonuclease T2 and aldo-keto reductase were only expressed in 3 cultivars except for Daepung-susu (DPS). CONCLUSION(S): Functions of identified proteins were mainly involved in RNA metabolism, heat shock protein (HSP), and redox related protein. Thus, they may provide new insight into a better understanding of the charactreization between the cultivars of sorghum.