• Title/Summary/Keyword: Seed Layer

Search Result 468, Processing Time 0.033 seconds

A Study on Structure and Differentiation of Seed Coat of Panax ginseng C.A. Meyer (인삼(Panax ginseng C.A. Meyer) 종피의 구조 및 분화에 관한 연구)

  • 김우갑
    • Journal of Plant Biology
    • /
    • v.29 no.4
    • /
    • pp.295-315
    • /
    • 1986
  • Structure and differentiation mechanism of the seed coat of Panax ginseng are studied with light and electron microscopes to clarify the developmental processes of seed coat and the structural changes during the differentiation of the seed. The seed coat of ginseng is differentiated from the inner cell layers of ovary wall, which can be compared with the seed coat differentiated from integument(s) in other plants. The single integument is differentiated into endothelium, which is degenerated to one layer of 4${\mu}{\textrm}{m}$ in thickness, composed of remants of cell wall components in fully ripened seed. The ripened seed coat is composed of three layers; fringe layer, inner layer and palisade layer, and all of the them are crossed at right angles with one another. This may be the cause of protection of the kernel from other mechanical injuries. The thickness of fully ripened seed coat is about 300~600 ${\mu}{\textrm}{m}$, and arrangements of sclereids are irregular. However, the raphe region of seed coat is thin about 200 ${\mu}{\textrm}{m}$ in thickness and sclereids in that region are arranged regularly. This is the important cause for the cleavage of the seed coat during post-maturation process. The vascular bundles on the raphe are still remaining after sarcocarps are removed, and one of the branches of vascular bundles entered into the seed coat through the hilum and extended to chalazal region. During post-maturation process, the supply of water being necessary for growth of embryo may be accompolished by the vascular bundles entered into the seed coat through the opened hilum.

  • PDF

The Relationship Between Soil Seed Bank and Ground Layer of Actual Vegetation in Korea (현존식생 내 초본층과 매토종자와의 관계)

  • Shin, Hyun-Tak;Yi, Myung-Hoon
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.127-135
    • /
    • 2011
  • This study was carried out in each three study areas of Pinus densiflora community and Quercus mongolica community from March 5th, 2008 to October 15th, 2010 to analyze the relationship between seed bank and the actual vegetation of the lower layer. Based on the relationship between the lower layer of actual vegetation and the germination of seed bank, all of three study areas, the similarity of the actual vegetation of the lower layer and seed bank were high in Plot 1 (84.62%) and Plot 3 (89.91%). As for Quercus mongolica community, the similarity was high between the actual vegetation of the lower layer and seed bank in Plot 4 (82.24%) and Plot 6 (89.47%). Especially, the germination of the pine seed banks in the Pinus densiflora community compared to other tree species appeared in all. In Quercus mongolica community, Quercus mongolica did not appear among the seeds germinated in the seek bank, but the other tree species constituting the under layer of the community. In case of the restoration based on the actual vegetation, it is desirable to sue the lower layer of vegetation as the model for the making of its alternatives for restoration works of the species.

Au Catalyst Free and Effect of Ga-doped ZnO Seed Layer on Structural Properties of ZnO Nanowire Arrays

  • Yer, In-Hyung;Roh, Ji-Hyoung;Shin, Ju-Hong;Park, Jae-Ho;Jo, Seul-Ki;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.354-354
    • /
    • 2012
  • In this study, we report the vertically aligned ZnO nanowires by using different type of Ga-doped ZnO (GZO) thin films as seed layers to investigate how the underlying GZO film micro structure affects the distribution of ZnO nanowires. Arrays of highly ordered ZnO nanowires have been synthesized on GZO thin film seed layer prepared on p-Si substrates ($7-13{\Omega}cm$) with utilize of a pulsed laser deposition (PLD). With the vapor-liquid-solid (VLS) growth process, the ZnO nanowire synthesis carries out no metal catalyst and is cost-effective; furthermore, The GZO seed layer facilitates the uniform growth of well-aligned ZnO nanowires. The influence of the growth temperature and various thickness of GZO seed layer have been analyzed. Crystallinity of grown seed layer was studied by X-Ray diffraction (XRD); diameter and morphology of ZnO nanowires on seed layer were investigated by field emission scanning electron microscopy (FE-SEM). Our results suggest that the GZO seed layer with high c-axis orientation, good crystallinity, and less lattice mismatch is key parameters to optimize the growth of well-aligned ZnO nanowire arrays.

  • PDF

전해도금을 위한 ALD Cu seed와 PVD Cu seed의 특성 비교

  • Kim, Jae-Gyeong;Park, Gwang-Min;Han, Byeol;Lee, Won-Jun;Jo, Seong-Gi;Kim, Jae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.231-231
    • /
    • 2010
  • 현재 Cu배선 제조공정에서 전해도금은 Damascene pattern의 Cu filling에 사용되고 있는데, 우수한 특성의 전해도금을 위해서는 step coverage가 우수한 Cu seed layer가 필수적이다. 현재까지 Cu seed layer를 형성하는 방법으로는 ionized physical vapor deposition(I-PVD)이 사용되고 있는데, 22 nm 이후의 소자에서는 step coverage의 한계로 인해 완벽한 Cu filling 어려울 것으로 예상된다. 본 연구에서는 step coverage가 매우 우수한 atomic layer deposition(ALD) 방법으로 Cu seed layer를 증착하고 그 특성을 기존의 PVD 박막과 비교하였다. Ketoiminate 계열의 +2가 Cu 전구체와 $H_2$를 이용하여 ALD Cu 박막을 증착하였는데 exposure, 기판의 온도를 변화시키면서 기판별로 ALD Cu의 최적공정조건을 도출하였다. ALD Cu seed와 PVD Cu seed 위에 약 $1{\mu}m$의 Cu 박막을 전해도금한 후 박막의 두께, 비저항, 미세구조와 함께 pattern filling 특성을 비교하였다.

  • PDF

Effects of Seed Layer and Thermal Treatment on Atomic Layer Deposition-Grown Tin Oxide

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.222-225
    • /
    • 2010
  • The preparation of tin oxide thin films by atomic layer deposition (ALD), using a tetrakis (ethylmethylamino) tin precursor, and the effects of a seed layer on film growth were examined. The average growth rate of tin oxide films was approximately 1.2 to 1.4 A/cycle from $50^{\circ}C$ to $150^{\circ}C$. The rate rapidly decreased at the substrate temperature at $200^{\circ}C$. A seed effect was not observed in the crystal growth of tin oxide. However, crystallinity and the growth of seed material were detected by XPS after thermal annealing. ALD-grown seeded tin oxide thin films, as-deposited and after thermal annealing, were characterized by X-ray diffraction, atomic force microscopy and XPS.

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young;Kim, Min-Su;Choi, Hyun-Young;Yim, Kwang-Gug;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.880-884
    • /
    • 2011
  • ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

Array of 2-dimensions and Vertical Alignment of Zinc Oxide Micro Rod by the CBD Method (CBD법에 위한 ZnO 마이크로 막대 구조체의 2차원 배열 및 수직정렬)

  • Lee, Yeok-Kyoo;Nam, Hyo-Duk;Lee, Sang-Hwan;Jeon, Chan-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.682-688
    • /
    • 2009
  • A periodic away of zinc oxide(ZnO) micro-rods as fabricated by using chemical bath deposition and photo-lithography. Vertically aligned ZnO micro-rods array was successfully grown by chemical bath deposition method on ZnO seed layer. The ZnO seed layer was deposited on glass and the patterning was made by standard photo-lithography technique. The selective growth of ZnO micro-rods as achieved with the masked ZnO seed layer. The fabricated ZnO micro rods were found to be single crystalline and have grown along hexagonal c-axis direction of (0002) which is same as the preferred growth orientation of ZnO seed layer.

Effects of Seed Layer and Rapid Thermal Annealing on the Properties of (Ba, Sr)TiO3 Films Prepared by Chemical vapor deposition (씨앗층과 급속 열처리가 화학 기상 증착법에 의한(Ba, Sr)TiO3 박막의 특성에 미치는 영향)

  • 최영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.4 no.2
    • /
    • pp.47-54
    • /
    • 1997
  • Pt/SiO2/Si을 기판으로 사용하고 RF 마그네트론 스퍼터링에 의한 (Ba, Sr)TiO3 (BST) 씨앗층을 약 10nm 정도의 두께로 입힌 다음 그 상부에 화학 기상증착법으로 BST를 증착하여 BST seed layer가 CVD BST 박막의 특성에 미치는 영향을 조사하였다. 또한 급 속열처리가 BST 박막과 커패시터의 특성에 미치는 영향도 조사하였다. Seed layer와 급속 열처리에 의해 박막의 결정성이 향상되었으며 이로인해 유전상수가 증가되었고 주파수에 대 한 유전특성도 개선되었다. Seed layer를 도입함으로써 BST 박막과 Pt 하부전극 사이의 계 면에 존재하고 있는 산소부족\ulcorner이 사라짐을 확인할수 있었으며 이로 인해 Pt/BST/Pt 커\ulcorner 시터의 누설전류가 감소하였다. 또한 급속 열처리에 의해 BST/Pt 계면에서 트랩된 전자의 농도가 감소함으로써 누설전류 특성이 개선됨을 알수 있었다. Seed layer 위에 증착된 CVD BST 박막의 유전상수는 증착온도가 증가함에 따라 증가하였으나 누설전류도 같이 증가하 였다.

Effect of Kind and Thickness of Seed Metal on the Surface Morphology of Copper Foil (Seed 금속의 종류와 두께에 따른 구리 전착층의 표면형상에 미치는 영향)

  • Woo, Tae-Gyu;Park, Il-Song;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.283-288
    • /
    • 2007
  • This study aimed to investigate the effects of the seed layer with copper electroplating on the surface morphology of copper foil. Three kinds of seed metal such as platinum, palladium, Pt-Pd alloy were used in this study. Electrodeposition was carried out with the constant current density of 200 $mA/cm^2$ for 68 seconds. Electrochemical experiments, in conjunction with SEM, XRD, AFM and four-point probe, were performed to characterize the morphology and mechanical characteristics of copper foil. Large particles were observed on the surface of the copper deposition layer when a copper foil was electroplated on the 130 nm thickness of Pd, Pt-Pd seed layer. However, a homogeneous surface, low resistivity was obtained when the 260 nm thickness of Pt, Pt-Pd alloy seed layer was used. The minimum value of resistivity was 2.216 ${\mu}{\Omega}-cm$ at the 260 nm thickness of Pt-Pd seed layer.

SiC single crystal grown on a seed with an inserted epitaxial layer for the power device application

  • An, Jun-Ho;Kim, Jeong-Gon;Seo, Jeong-Du;Kim, Jeong-Gyu;Gyeon, Myeong-Ok;Lee, Won-Jae;Kim, Il-Su;Sin, Byeong-Cheol;Gu, Gap-Ryeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.232-232
    • /
    • 2006
  • SiC single crystal Ingots were prepared onto different seed material using sublimation PVT techniques and then their crystal quality was systematically compared. In this study, the conventional SiC seed material and the new SiC seed material with an inserted SiC epitaxial layer on a seed surface were used as a seed for SiC bulk growth. The inserted epitaxial layer was grown by a sublimation epitaxy method called the CST with a low growth rate of $2{\mu}m/h$ N-type 2"-SIC single crystals exhibiting the polytype of 6H-SiC were successfully fabricated and carrier concentration levels of below $10^{17}/cm^3$ were determined from the absorption spectrum and Hall measurements. The slightly higher growth rate and carrier concentration were obtained in SiC single crystal Ingot grown on new SiC Seed materials with the inserted epitaxial layer on the seed surface, maintaining the high quality.

  • PDF