• Title/Summary/Keyword: Seed Extract

Search Result 762, Processing Time 0.025 seconds

Effects of Safflower Seed Extract on the Osteoblastic Activity and Bone Regeneration (홍화씨 추출물이 조골모유사세포활성 및 골재생에 미치는 영향)

  • Yoon, Dong-Hwan;Lee, Seoung-Cheul;Kim, Myung-Eun;Kim, Eun-Cheol;You, Hyung-Keun;Kim, Youn-Chul;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.769-786
    • /
    • 1998
  • The purpose of the present study is to examine the effect of cell proliferation and alkaline phosphatase activity in osteoblastic cells and to compare the bone healing ability of rat calvarial defects between the control group and the safflower seed extract treated group. Osteoblastic cells were obtained from calvariae of a fetal rat. Cells were cultured containing DMEM and safflower seed extract ($10^{-6}g/ml$, $10^{-3}g/ml$) at $37^{\circ}$ with 5% $CO_2$ in 100% humidity for 3 days. MTT was performed to examine the viability of the cells, and alkaline phosphatase activity was analyzed to examine the mineralization in vitro. Rat calvarial defects($5{\times}5mm$) in 250g Sprague-Dawly were made using round bur. Rats were administrated with safflower seed extract(0.35g/kg/day) for experimental periods. Calvarial defects were studied histopathologically and immunohistochemically at 1,4, and 8 weeks. High concentration group($10^{-3}g/ml$) of safflower seed extract significantly increased in the cell proliferation and alkaline phos phatase synthesis in osteoblastic cells. The infiltration of inflammatory cells and osteoclastic activities were decreased in the safflower seed extract treated group as compared with control group. Bone maturation was accelerated in the safflower seed extract treated group as compared to control group. No difference in osteoinductive process was observed between the control and the safflower seed extract treated group. Immunohistochemical observation revealed that protein expression of TGF-$\beta$and osteonectin during early healing phase in the safflower seed extract treated group was slightly increased as compared to control group. These results indicate that safflower seed extract promotes the healing process in bony defect of rat calvariae, and retains a potential applicability as an adjuvant therapeutic modality for regeneration of periodontal bony defect.

  • PDF

Effects of the Zizyphus jujuba Seed Extract on the Lipid Components in Hyperlipidemic Rats

  • Kim, Han-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.72-77
    • /
    • 2002
  • The purpose of this study was designed to observe the effects of Zizyphus jujuba seed extract on the concentrations of the lipids and blood glucose in the S.D. rats fed the experimental diets for 4 weeks. Concentrations of total cholesterol, atherosclerotic index, LDL, LDL-cholesterol, free-cholesterol, cholesteryl ester, triglyceride (TG), phospholipid (PL) and blood glucose in serum were significantly higher in the cholesterol administration groups (group 2 (cholesterol+water), group 3 (cholesterol+Zizyphus jujuba seed extract)) than those in the control group (group 1, basal diet+water). But the concentrations of total cholesterol, atherosclerotic index, LDL, LDL-cholesterol, free-cholesterol, cholesteryl ester, TG, PL and blood glucose in serum ware remarkably lower in the group 3 than those in the group 2. In the ratio of HIDL-cholesterol concentration to total cholesterol and HDL-cholesterol concentration, Zizyphus jujuba seed extract administration group was higher percentage than in the group 2. The activities of aspartate aminotransferase (AST), alanine amino-transferase (ALT), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) in serum were rather lower in the Zizyphus jujuba seed extract administration group (group 3) than in the cholesterol diet group (group 2). From the above research, Zizyphus jujuba seeds were effective on the improvement of the blood glucose, lipid compositions in serum of dietary hyperlipidemic rats. And particularly, Zizyphus jujuba seeds were more effective as a therapeutic regimen for the control of metabolic derangements in adult disease.

Antifungal Activities of Ethanolic Extract from Jatropha curcas Seed Cake

  • Saetae, Donlaporn;Suntornsuk, Worapot
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.319-324
    • /
    • 2010
  • Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the biodiesel fuel industry. Four repeated extractions from 5 g of J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rpm gave the highest yield of phorbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important fungal phytopathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsid, and Colletotrichum gloeosporioides. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

Antimicrobial Activity of Grapefruit Seed Extract (자몽 종자 추출물의 항균성)

  • Park, Heon-Kuk;Kim, Sang-Bum
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.526-531
    • /
    • 2006
  • Minimum inhibition concentration(MIC), growth inhibition activity, and colony forming inhibitory activity of grapefruit seed extract against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella enterifidis and Serratia marcescens were tested. MIC of grapefruit seed extract against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella enteritidis and Serratia marcescens was 12.5, 12.5, 12.5, 50, 50, 100ppm, respectively. Growth inhibition concentration of grapefruit seed extract against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella enteritidis and Serratia marcescens was below 1.0, 6.25, below 1.0, 6.25, 25, 25ppm, respectively. Colony forming inhibitory activity of grapefruit seed extract against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella enteritidis and Serratia marcescens was 93.9, 94.0, 99.9, 4.4, 82.7, 86.4%, respectively. Colony forming inhibitory activities of grapefruit seed extract against Gram positive bacteria were higher than that against Gram negative bacteria.

Inhibitory Effects of Grapefuit Seed Extract on Growth and Aflatoxin Production of Aspergillus parasiticus (Grapefruit 종자추출물을 이용한 Aspergillus parasiticus의 생육 및 Aflatoxin 생성억제 효과)

  • 조성환;정덕화;서일원;이현숙;황보혜;박우포
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 1992
  • This study was conducted to determine the potential of grapefruit seed extract to support Aspergillus parasilicus growth and aflatoxin production. The grapefruit seed extract inhibited the growth and aflatoxin production of the fungi in the level of more than 4,000 ppm and 3,000 ppm in the medium, respectively. Grapefruit seed extract appears to block the conversion of acetate, averufin and versiconal acetate into aflatoxin in vitro experiments. The addition of grapefruit seed extract to the feeding experiment systems did not inhibit the incorporation of 14C-labeled versicolorin A, versicolorin A hemiacetal and sterigmatocystin into aflatoxin. In the electron microscopic examination the biocidal action of grapefruit seed extract was related to the disturbance of cell menbrane funtion, inhibiting cellular respiration.

  • PDF

Antimicrobial Activity of Grape Seed Ethanol Extract (포도종실 에탄올 추출물의 항균 활성)

  • 정하열;박동규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.109-114
    • /
    • 2003
  • Antimicrobial activities of grape seed ethanol extract and its serial solvent fractions were investigated against various food poisoning microorganisms. The grape seed ethanol extract showed dose dependant antimicrobial activity against Bacillus subtilis ATCC 9372 or Staphylococcus aureus ATCC 6538, whereas had limited effect on Pseudomonas aeruginosa IFO 3080, Salmonella enteritidis IFO 3313 and Escherichia coli ATCC 25922. Ethylacetate and butanol fractions ameng the serial solvent fractions of grape seed ethanol extract contained the catechin at the levels of 35.7 mg/g and 20.2 mg/g, respectively. Nevertheless, the butanol fraction of grape seed ethanol extract showed intense antimicrobial activity compared with the ethylacetate fraction on all microorganisms tested. It was found that the butanol fraction was mainly composed of oligomeric or polymeric polyphenols such as condensed tannins by the fractionation on C l8 cartridge according to the difference in the degree of polymerization. Therefore, it seems that the antimicrobial activity of grape seed ethanol extract is related to the degree of polymerization of proanthocyanidin as well as the total content of flavan-3-ol composing the proanthocyanidin.

Effect of Safflower and Safflower Seed Extract on Osteogenic Differentiation of MC3T3E1 Cells (홍화, 홍화씨 추출물이 MC3T3E1 세포의 골분화 과정에 미치는 영향)

  • Yu, Sung-ryul;Shin, Seon-mi
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.518-526
    • /
    • 2015
  • Objectives This study investigated the effect of purified safflower (Carthamus tinctorius Linne) and safflower seed (Carthamus tinctorius L. seed; CS) extract, using hot water and ethanol extract methods , on the osteogenic differentiation of MC3T3E1 cells.Methods The safflower and safflower seed were extracted with hot water and ethanol. The samples were concentrated by a rotary evaporator and then freeze-dried using a freeze-dryer. The MC3T3E1 cells were propagated and maintained in DMEM (Gibco) containing 10% FBS and a 1% antibiotic antimycotic solution. To induce osteogenic differentiation, the cells were treated for 14 days with DMEM with 10 mM β-glycerophosphate and 50 μM ascorbic acid. Extract doses were confirmed by the results of an MTT assay, and treatment of the extracts was performed in a differentiation medium every two days. The ALP staining and activity were tested after osteogenic differentiation for five days, and after 14 days, osteogenic differentiation was determined by alizarin red S staining. The mRNA expressions of osteogenic-related genes were quantified using quantitative real-time PCR.Results In the results of the MTT assay, all concentrations of safflower extracts had no toxicity in the MC3T3El cells. But in the groups of 100 ng/ml and 200 ng/ml concentrations of safflower seed extracts, the cell viability was significantly reduced by up to 40-50%. So we fixed the treatment concentration of the extract at 50 ng/ml. In the ALP and alizarin red S staining, all extract groups increased osteogenic differentiation compared with the control group. The water-safflower extract group showed the highest mRNA level of Alp, Runx2, and Dlx5 genes. The mRNA level of Ocn, an osteogenic gene related to late-stage differentiation, in the ethanol-safflower extract group increased the mineralization more significantly than in other groups.Conclusions These data suggest that the extract of safflower increases the osteoblastic differentiation activates of MC3T3E1 cells like the extract of safflower seed. The water-extract and ethanol-extract of safflower have effects on different stages of osteogenesis in MC3T3El. Not only safflower seed but also safflower will be useful therapeutic reagents for age-associated chronic diseases such as osteoporosis.

Effects of Safflower Seed Extracts and Bovine Bone on Regeneration of Bone Defects in Mongrel Dogs (홍화씨 추출물 및 우골유도합성골이 성견골 결손부 재생에 미치는 영향)

  • Seo, Jae-Jin;Kim, Tak;Pi, Sung-Hee;Yun, Gi-Yun;Yu, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.553-569
    • /
    • 2000
  • Many natural medicines have been studied for their capacity and effects of antibacterial, anti-inflammatory and regenerative potential in periodontal tissues. Safflower seed has been traditionally used as a drug for treatment of bone fracture in oriental medicine. The purpose of the present study was to compare the effects of safflower seed extract and bone substitute on bone formation and regeneration in artificial defects in mongrel dogs. The bony defects were made with round bur at mandible and tibia. Extracts of safflower seed and bovine bone were placed directly at each defect for experimental group, and the defect of control group was sutured without any other treatment. Experimental animals were sacrificed at 8 weeks. And then histopathologic reading and histomorphometric study was done. There was not significant differences between control and experimental groups in osteoclastic activity and infiltration of inflammatory cells. However, new capillary proliferation, fibrosis and new bone formation were prominent in safflower seed extract group. The mandibular defects of safflower seed extract group were healed with dense connective and bony tissues, and endochondral bone formation was observed in tibial defect of safflower seed extract group only. New bone area of safflower seed extract group was more significantly increased than that of control and that of bone substitute group. These results indicate that direct local application of safflower seed extracts on bony defects seems to reduces the early inflammatory response and to promotes the bone regeneration.

  • PDF

Effect of oil and aqueous extract of Neem (Azadirachta indica) seeds on growth of Aspergillus species and biosynthesis of aflatoxin

  • Rashid, Faraz;Naaz, Farah;Abdin, MZ;Zafar, Shadab;Javed, Saleem
    • Advances in Traditional Medicine
    • /
    • v.5 no.4
    • /
    • pp.308-315
    • /
    • 2005
  • Aflatoxin contamination is a major problem in several food crops. Aflatoxin, a mycotoxin, produced by Aspergillus flavus has gained immense concern in the scientific world because of its tremendous harmful effects. The study was focused to see the effect of oil and aqueous extract of neem (Azadirachta indica) seeds on the growth of Aspergillus and production of aflatoxin by the mold. Various amounts of neem oil $(5\;-\;50\;{\mu}l/ml)$ and aqueous extract of neem (5 - 50 mg/ml) were used both in the broth as well as the solid medium. Fungistatic (MIC) and minimal fungicidal concentrations (MFC) were found to be $10\;{\mu}l/ml$ and $50\;{\mu}l/ml$ respectively for neem seed oil. At the concentration of $5\;{\mu}l/ml$ neem oil and 5 mg/ml of aqueous extract, a significant decrease in the aflatoxin content was found in broth medium. Aflatoxin production was totally inhibited at $50\;{\mu}l/ml$ and 50 mg/ml for neem oil and aqueous extract of neem respectively, in both treatments. There was significant inhibition of mycelium dry weight by the neem seed oil. Mycelial growth was totally inhibited at $20\;{\mu}l/ml$ of neem seed oil concentration in broth, whereas it was not affected at all by aqueous extract. It can therefore be inferred that the oil and extract from the neem seed leads to inhibition of aflatoxin production while neem seed oil also significantly inhibits the mycelial growth. Neem seed oil thus can be used as potent, natural and easily available anti-aflatoxigenic agent.

The Effects of Aqueous Extract and Volatile Substances of Two Angelica Plants on Seed Germination and Seedling Growth (당귀속 2종 식물의 수용추출액과 휘발성물질이 종자발아와 유묘생장에 미치는 영향)

  • Yun Kyeong-Won
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.169-173
    • /
    • 2006
  • The effects of aqueous extract and volatile substances of 2 Angelica plants on seed germination and seedling growth were investigated. The seed germination of Angelica gigas showed increase in proportion to increase in aqueous extract concentration of A. gigas, while that of Angelica acutiloba was reduced proportionally to the extract concentration. The seed germination of A. gigas and A. acutiloba treated with aqueous extract of A. acutiloba was inhibited. The seedling elongation of A. gigas and A. acutiloba was slightly increased at lower concentration of aqueous extract of A. gigas, whereas it was proportionally decreased at higher concentrations. The seedling elongation of 2 Angelica plants was decreased by the aqueous extract of A. acutiloba. The aqueous extract of A. acutiloba caused significant inhibition in seedling growth of 2 Angelica plants. The seed germination of Lactuca sativa was not affected by volatile substances emitted from 2 Angelica plants. The radicle elongation of L. sativa treated with volatile substances of 2 Angelica plants was inhibited slightly and it was not suppressed according to the concentration of volatile substances.