• Title/Summary/Keyword: Sedimentary

Search Result 1,361, Processing Time 0.02 seconds

The Perception of Elementary Students Regarding Sedimentary Rock (초등학생들의 퇴적암에 대한 인식 조사)

  • Kim, Deok-Ho;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.2
    • /
    • pp.258-272
    • /
    • 2014
  • The purpose of this study is to investigate the perception on sedimentary rock in elementary science 'Earth and Space' domain for elementary school students. For this purpose, questionnaires on the sedimentary rock perception were developed. And the sedimentary rock perception was examined for random sampling of 5th and 6th grade 656 students. As a result, students chosen incorrect answers of the average 53.8% for questions of sedimentary rock perception. Over the average rate of incorrect answers in 18 questions were 10 questions (3 in the creation of sedimentary rock, 5 in the classification of sedimentary rock, 2 in the sedimentary layer). When the results were stratified by residence, grade and gender, there were significant differences in 8 questions between students in urban and rural areas, in 6 questions between 5th and 6th grade students, and in 3 questions between male and female students. The study that understanding of elementary students for sedimentary rock can be provided for form the master planning the teaching strategy to student's scientific concepts in elementary school. The results are also contributed to find an effective ways for modify misconceptions of sedimentary rock to the scientific concepts.

Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica

  • Yoo, Chan-Min;Choe, Moon-Young;Jo, Hyung-Rae;Kim, Yae-Dong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.97-107
    • /
    • 2001
  • The Sejong Formation of Late Paleocene to Eocene is a lower volcaniclastic sequence unconformably overlain by upper volcanic sequence, and distributed along the southern and southeastern cliffs of the Barton Peninsula. The Sejong Formation is divided into five sedimentary facies; disorganized matrix-supported conglomerate (Facies A), disorganized clast-supported conglomerate (Facies B), stratified clast-supported conglomerate (Facies C), thin-bedded sandstone (Facies D), and lapilli tuff (Facies E), based on sedimentary textures, primary sedimentary structures and bed geometries. Individual sedimentary facies is characterized by distinct sedimentary process such as gravel-bearing mudflows or muddy debris flows (Facies A), cohesionless debris flows (Facies B),unconfined or poorly confined hyperconcentrated flood flows and sheet floods (Facies C), subordinate streamflows (Facies D), and pyroclastic flows (Facies E). Deposition of the Sejong Formation was closely related to volcanic activity which occurred around the sedimentary basin. Four different phases of sediment filling were identified from constituting sedimentary facies. Thick conglomerate and sandstone were deposited during inter-eruptive phases (stages 1, 3 and 4), whereas lapilli tuff was formed by pyroclastic flows during active volcanism (stage 2). These records indicate that active volcanism occurred around the Barton Peninsula during Late Paleocene to Eocene.

  • PDF

Sedimentary Environment Change in Mid-channel Bar of the Lower Geum River Using Multi-temporal Satellite Data (다중시기 영상자료를 이용한 금강하류의 하중도 퇴적환경 변화)

  • Hong, Ki-Byung;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.171-183
    • /
    • 2009
  • This study aims to analyze the sedimentary environment change in mid-channel bar of the lower Geum river basin after the construction of the estuary barrage using multi-temporal satellite data and GIS. The sedimentary environment changes were observed in mid-channel bar areas. The mid-channel bar F was found to have been newly formed for 10 years(1996-2006), whereas the mid-channel bar B located between mid-channel bar A and C has disappeared by erosion during the same periods. When examined by section, the areas of the mid-channel bar in the upper stream section from the Yipo's reference point generally increased due to the prevailing sedimentary environments, and those of the downstream section decreased where corrosive environments are dominant. In ternms of the centroid movement, the mid-channel bars grew up toward the downstream by switching erosion and accumulation, as sedimentation was prevailing in the downstream area of mid-channel bars and corrosion was dominant in the upper stream. Through grain size analysis, the study areas are divided into three sections according to the average grain size. In Section I, the mid-channel bars were formed as a result of sedimentary process of tides in the past. In Section II, the mid-channel bars were formed partly through the sedimentary process of rivers although the sedimentary process of tides is prevailing. In Section III, the mid-channel bars were formed mainly through the sedimentary process of rivers, even if it showed the sedimentary process of tides in the past.

Physicochemical Characteristics and Formation Environments of the Ujeon Coastal Dune Depositsin Jeungdo (증도 우전 해안사구 퇴적층의 물리화학적 특성과 형성환경)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.43-61
    • /
    • 2018
  • Heterogeneous sedimentary deposits with different soil colors and various degree of hardness are exposed in its foredune and tidal zone due to the effects of recently accelerated coastal erosion along the Ujeon Coast in Jeung-do, Shinan-gun. This study was conducted on the assumption that these sedimentary deposits were developed in different timing and environments. Thus, we can infer the geomorphic development processes of the area based on evidences like the physicochemical characteristics of each sedimentary layer. Several analysis of these sedimentary depositssuch as grain size analysis, X-ray Fluorescence Measurement (XRF), and Loss on ignition (LOI) were performed on central (Ujeon A) and southern (Ujeon B) parts of the Ujeon Coast. I found that the foredune sedimentary deposits have four stages of geomorphic development processes. In the initial stage of development, during the peak of the Last Interglacial Period (MIS 5e), basal deposits were accumulated in the low-energy environment of subtidal zones. In the second stage, during the Last Glacial Period (MIS 4~MIS 2), eolian sedimentary layers were developed by terrestrial aeolian processes by which fine materials were transported from the Yellow Sea which became a dry land exposed by lowered sea level. In the third stage, various mechanism existed for the formation of each sedimentary layer. In the region of Ujeon A, sedimentary layers were developed in the littoral zone environment dominated by marine processes during the maximum phase of transgression in the Holocene. Meanwhile, the region of Ujeon B began to form eolian sedimentary layers during MIS 2. In the last stage, thick coastal dune deposits, covered all over the Ujeon Coast. During the late Holocene (0.7~0.6 ka), terrestrial processes kept dominating the region, developing typical eolian sedimentary layers.

A Study on the Rock Mass Classifications and Reinforcement in Unconsolidated Sedimentary Rock Tunnel (미고결 퇴적암 터널에서의 암반분류 및 보강에 관한 연구)

  • Kim, Nakryoong;Jeong, Sangseom;Ko, Junyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.655-666
    • /
    • 2013
  • A number of highway projects are in progress in Korea to accommodate increasing transportation demands. As the highway route becomes more complex, some projects include tunneling through unconsolidated sedimentary rock. Since an unconsolidated sedimentary rock mainly consists of rock and ground mass, the behavior and characteristics in unconsolidated sedimentary rock tunnel are quite different from typical rock tunnel. However, construction case histories and rock classifications method on unconsolidated sedimentary rock tunnel had not been developed or studied domestically. Consequently the case studies and rock classification system for unconsolidated sedimentary rock are required to better understand its behavior for tunneling. In this study, rock mass classification method is proposed to identify unconsolidated sedimentary rock based on point load and slake durability tests. Based on this, the proposed method of unconsolidated sedimentary rock can be applied well through comparisons with the results of convergence measurement.

Hydrochemical Characteristics of Deep Groundwater at Surak-ri, Nonsan-gun, Chungnam Province, Korea (충남 논산군 수락리 일대 심부지하수의 수질특성)

  • Im, HyunChul;Cho, ByongWook
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.2
    • /
    • pp.113-120
    • /
    • 2004
  • Hydrochemical characteristics of deep groundwater at Surak-ri, Nonsan-gun, Chungnam Province was explained by major ion concentration, water type, and phase stability diagram. The area is composed of meta-sedimentary rock and quartz pophyry. The 5 boreholes where deep groundwater was sampled and analyzed are located on the meta-sedimentary rocks and drilling depth range of the wells is from 554 m to 928 m. pH, TDS, Na, and SiO2 values are high in the groundwater from meta-sedimentary area intruded by quartz pophyry, while Ca is high in the groundwater from meta-sedimentary area. K and Mg concentrations are low but F concentration is high both groundwater. The content of major anions is in the order of CO3(HCO3)>Cl>SO4(F) in both geology, while that of major cations shows the order of Na>Ca>K(Mg) in meta-sedimentary area intruded by quartz porphyry and a>Na>Mg>Na in meta-sedimentary area. Based on the phase equilibrium in the systems Na2O-Al2O3-SiO2-H2O and K2O-Al2O3-SiO2-H2O, the groundwater is saturated with respect to Quartz and more evolved compared with the natural mineral water. It is concluded that chemical evolution in the groundwater from meta-sedimentary area intruded by quartz porphyry, is nearly saturated with respect to feldspar, while the groundwater from meta-sedimentary area continue to proceed with increasing pH by reaction of feldspar.

  • PDF

Development of Sedimentary Sequence in the Masan Bay, South Sea of Korea (마산만 퇴적층서 발달 특성)

  • Choi, Dong-Lim;Lee, Tae-Hee
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.411-418
    • /
    • 2007
  • We studied the bottom morphology and sedimentary environments of the Masan Bay using high-resolution Chirp seismic profiles and sediments data. According to deep-drilled core samples (up to 20 m thick) penetrated into the weathered rock basement, the sediments consist largely of three sediment types: the lower sandy gravel facies (Unit I) of 1-4 m in thickness, the middle sandy mud and/or muddy sand facies(Unit II) of 1-2 m thick and the upper mudfacies (Unit III) of over 10 m in thickness. The sedimentary column above the acoustic basement can be divided into two major sequences by a relatively strong mid-reflector, which show the lower sedimentary sequenc e(T) with parallel to subparallel internal reflectors and the upper sedimentary sequence(H) with free acoustic patterns. Acoustic basement, the lower sedimentary sequence (T), and the upper sequence (H) are well correlated with poorly sorted massive sandy gravels (Unit I), the sand/mud-mixed sediment (Unit II), and the muddy facies(Unit III), respectively. The acoustic facies and sediment data suggest that the Masan bay is one of the most typical semi-enclosed coastal embayments developed during the Holocene sea-level changes. The area of the Masan Bay reduced from about $19\;km^2$ in 1964 to about $13\;km^2$ in 2005 by reclamation, and its bottom morphology changed as a result of dredging of about $2{\times}10^7\;m^3$.

Analysis of Paleo Sedimentary Environment of Gochang Coast Using Grain Size Distribution Characteristics (입도분포 특성을 기반으로 한 고창 연안의 과거 퇴적환경 분석)

  • Han, Min;Yang, Dong-Yoon;Park, Chanhyeok
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.43-55
    • /
    • 2018
  • This study aimed to identify different sedimentary environments of Gochang coast according to geomorphic conditions of each bore hole. To achieve the aim, this study utilized the classification of sedimentary environmental conditions of surface sediment, which was based on grain size distribution characteristics.In other words, three sedimentary environmental conditions ofsandy flat + sand beach, coastal sand dune and weathered bedrock soil, which were distinguished based on grain size distribution characteristics of mean-sorting for surface sediments, were applied to the sediments of bore holes. Four sedimentary environments could be identified in Gochang coast. First, the lake sedimentary environment originated from terrestrial sediments seems to have been dominated by weathered bedrock soil that the surface flow has deposited in a coastal wetland or a boundary, which is affected by the sea. Second, the lake sedimentary environment that is little affected by coastal sand dunes is located at the center of a valley, which is connected to the land, and the dune slack of Saban-ri. The surface flow of weather bedrock soil is the main source of deposits. However, there seems to have been a temporary influence of the sea. Third, the lake sedimentary environment that is strongly affected by coastal sand dunes is located at the dune slack of Yeongjeong-ri. This environment shows traces of a change from a coastal sand dune into the dune slack. Finally, the coastalsand dune sedimentary environment, which wasinvestigated by boring the current coastal sand dune, shows a temporary influence of the land but seems to have maintained the overall stability. Consequently, this study demonstrated that the grain size distribution characteristics of the present surface sediments could be effectively applied to identify the sedimentary environments of the paleo bore hole sediments. In addition, the paleo change of sedimentary environment could also be identified in many places of Gochang coast. If the results of this study are combined with the age dating and geochemical analysis in future works, the paleo environmental change in Gochang coast will be restored more precisely.

Engineering Characteristics and Problems in The Sedimentary rock (퇴적암의 공학적 특성 및 문제점)

  • 이영휘;김용준;정강복
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11b
    • /
    • pp.31-50
    • /
    • 2002
  • The sedimentary rocks deposited in Taegu and Kyongbuk region consist of various rocks such as the shale, mudstone, siltstone and sandstone. The characteristics of the sedimentary rocks are distinguished from those of igneous rocks and metamorphy rocks for the stratum caused by deposit environment. This study investigated engineering characteristics of the anisotropy, weathering rock and filled rock joints in the notable features of sedimentary rocks.

  • PDF

Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA) (UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성)

  • Kim, Kye-Lim;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.277-292
    • /
    • 2020
  • The purpose of this study is to propose the possibility of precise surface sedimentary facies classification and a more accurate classification method by generating the large-scale map of surface sedimentary facies based on UAV data and object-based image analysis (OBIA) for Hwang-do tidal flat in Cheonsu bay. The very high resolution UAV data extracted factors that affect the classification of surface sedimentary facies, such as RGB ortho imagery, Digital elevation model (DEM), and tidal channel density, and analyzed the principal components of surface sedimentary facies through statistical analysis methods. Based on principal components, input data to be used for classification of surface sedimentary facies were divided into three cases such as (1) visible band spectrum, (2) topographical elevation and tidal channel density, (3) visible band spectrum and topographical elevation, tidal channel density. The object-based image analysis classification method was applied to map the classification of surface sedimentary facies according to conditions of input data. The surface sedimentary facies could be classified into a total of six sedimentary facies following the folk classification criteria. In addition, the use of visible band spectrum, topographical elevation, and tidal channel density enabled the most effective classification of surface sedimentary facies with a total accuracy of 63.04% and the Kappa coefficient of 0.54.