• Title/Summary/Keyword: Sediment basin

Search Result 314, Processing Time 0.028 seconds

A Study on Establishing Optimum Scale of Sediment Basin for Preventing the Outflow of Sediment - In the case of Buju Mountain in Mokpo city, Korea - (토사유출 방지용 침사지 적정규모 설정방안에 관한 연구 -목포시 부주산을 사례로-)

  • 우창호;황국웅
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.4
    • /
    • pp.59-69
    • /
    • 1999
  • This study examines the existing theories related to detention basin and embodies the calculation process of sediment basin. It investigated the scale of sediment basin by actual measurement at Buju Mountain, Mokpo city which causes the environmental problems like erosion and outflow of sediment due to the excessive development, finds the problems of existing sediment basin by applying and analyzing the physical factors which affect the execution of sediment basin using GIS as the method establishing the scale of sediment basin embodied in this study and then suggests the oteimum scale. Comparing the surface area of the existing sediment basin and of the required one, all of the surface areas of the existing sediment basins were smaller than those of the required one. Therefore, it can be expected that the trap efficient of sediment will be declined. The required one. Therefore, it can be expected that the trap efficient of sediment will be declined. The required minimum depth was fully satisfied, but it is analyzed that the volume of sediment basin will affect the neighboring environment because it can not accomodate the inflow discharge volume except sediment basin C. It is consistent with the actual situation which causes a serious environmental problem due to the overflow of sediment basin during the heavy storm event except sediment basin C and also it verifies the validity of calculation process of establishing optimum sediment basin suggested in this study.

  • PDF

Soil Erosion Modeling in the 3S Basin of the Mekong River Basin

  • Thuy, Hoang Thu;Lee, Giha;Yu, Wansik;Shin, Yongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.21-35
    • /
    • 2017
  • The 3S Basin is described as an important contributor in terms of many aspects in the Mekong River Basin in Southeast Asia. However, the 3S Basin has been suffering adverse consequences of changing discharge and sediment, which are derived from farming, deforestation, hydropower dam construction, climate change, and soil erosion. Consequently, a large population and ecology system that live along the 3S Basin are seriously affected. Accordingly, the calculating and simulating discharge and sediment become ever more urgent. There are many methods to simulate discharge and sediment. However, most of them are designed only during a single rainfall event and they require many kinds of data. Therefore, this study applied a Catchment-scale Soil Erosion model (C-SEM) to simulate discharge and sediment in the 3S Basin. The simulated results were judged with others references's data and the observed discharge of Strung Treng station, which is located in the mainstream and near the outlet of the 3S Basin. The results revealed that the 3S Basin distributes 31% of the Mekong River Basin's total discharge. In addition, the simulated sediment results at the 3S Basin's outlet also substantiated the importance of the 3S Basin to the Mekong River Basin. Furthermore, the results are also useful for the sustainable management practices in the 3S Basin, where the sediment data is unavailable.

A Study on the Sensitivity Analysis of the Deterministic Sediment Yield Formulas (결정론적 유사량 산정공식의 민감도 분석에 관한 연구)

  • 김성원;고병련;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.581-590
    • /
    • 1998
  • This st at the development of the adequate sediment yield formulas in Wi-Stream basin ; IHP representative basin in Korea. As a result of applying outstanding sediment yield formulas among the existing formulas, it is analyzed that including the Engelund & Hansen formula, Yang formula is proper to the Wi-Stream basin. And as a result of sensitivity analysis to the sediment parameters it is analyzed that Rijn and Actors & White formula is more sensible than any other formulas which has been applied the velocity and depth among the parameters. Also, Engelund & Hansen and Yang formula is less sensible than any other formulas. In Wi-Stream basin, it is analyzed that Yang and Engelund & Hansen formula is the most suitable sediment yield formula in this study. But because the existing formulas had been developed in foreign countries and applied the foreign natural livers and reservoirs, it makes careful use of Korean alluvial river and hoped that it will be developed the most adequate formula in Wi-Stream basin.

  • PDF

Community Structure, Diversity, and Vertical Distribution of Archaea Revealed by 16S rRNA Gene Analysis in the Deep Sea Sediment of the Ulleung Basin, East Sea (16S rRNA 유전자 분석방법을 이용한 동해 울릉분지 심해 퇴적물 내 고세균 군집 구조 및 다양성의 수직분포 특성연구)

  • Kim, Bo-Bae;Cho, Hye-Youn;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 2010
  • To assess community structure and diversity of archaea, a clone sequencing analysis based on an archaeal 16S rRNA gene was conducted at three sediment depths of the continental slope and Ulleung Basin in the East Sea. A total of 311 and 342 clones were sequenced at the slope and basin sites, respectively. Marine Group I, which is known as the ammonia oxidizers, appeared to predominate in the surface sediment of both sites (97.3% at slope, 88.5% at basin). In the anoxic subsurface sediment of the slope and basin, the predominant archaeal group differed noticeably. Marine Benthic Group B dominated in the subsurface sediment of the slope. Marine Benthic Group D and Miscellaneous Crenarchaeotal Group were the second largest archaeal group at 8-9 cm and 18-19 cm depth, respectively. Marine Benthic Group C of Crenarchaeota occupied the highest proportion by accounting for more than 60% of total clones in the subsurface sediments of the basin site. While archaeal groups that use metal oxide as an electron acceptor were relatively more abundant at the basin sites with manganese (Mn) oxide-enriched surface sediment, archaeal groups related to the sulfur cycle were more abundant in the sulfidogenic sediments of the slope. Overall results indicate that archaeal communities in the Ulleung Basin show clear spatial variation with depth and sites according to geochemical properties the sediment. Archaeal communities also seem to play a significant role in the biogeochemical carbon (C), nitrogen (N), sulfur (S), and metal cycles at each site.

Application of Sediment Yield Estimation Methods for an Urbanized Basin (도시유역에 대한 토사유출량 모의기법 적용성 검토)

  • Son, Kwang-Ik;Roh, Jin-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.737-745
    • /
    • 2009
  • Field measured sediment yield from an experimental urbanized basin was compared with the predicted sediment yields with RUSLE (Revised Universal Soil Loss Equation), and MUSLE (Modified Universal Soil Loss Equation). The experimental basin is 3.1km2 in area and fifty six percent of the total area had been urbanized. The hydrological data have been measured with T/M at the outlet of the experimental basin. Runoff from the basin and rainfall depth of the basin were measured every minute. Bed load and suspended load were also measured for a given flow rate. Runoff rating curves and sediment rating curve were developed for the last three years. RUSLE showed scattered prediction results but the average of the prediction values was close to the measured one. Meanwhile, MUSLE showed linear correlation between the measured sediment yield and predicted one with high correlation coefficient. But MUSLE predicts high values than the real one. Therefore, adjustment is necessary to apply MUSLE in estimation of sediment yield from the experimental urbanized basin.

Three-dimensional numerical modeling of sediment-induced density currents in a sedimentation basin (3차원 수치모의를 통한 침사지에서의 부유사 밀도류 해석)

  • An, Sang Do;Kim, Gi-Ho;Park, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.383-394
    • /
    • 2013
  • A sedimentation basin is used to remove suspended sediments which can cause abrasive and erosive wear on hydraulic turbines of hydropower plants. This sediment erosion not only decreases efficiency of the turbine but also increases maintenance costs. In this study, the three-dimensional numerical simulations were carried out on the overseas hydropower project. The simulations of flow and suspended sediment concentration were obtained using FLOW-3D computational fluid dynamics code. The simulations provide removal efficiency of a sedimentation basin based on particle sizes. The influence of baffles on the flow field and the removal efficiency of suspended sediments in the sedimentation basin has been investigated. This paper also provides the numerical simulations for sediment-induced density currents that may occur in the sedimentation basin. The simulation results indicate that the formation of density currents decreases the removal efficiency. When a baffle is installed in the sedimentation basin, the baffle provides intensive settling zones resulting in increasing the sediments settling. Thus the enhanced removal efficiency can be achieved by installing the baffle inside the sedimentation basin.

Assessment of Sediment Yield according to Observed Dataset

  • Lee, Sangeun;Kang, Sanghyeok
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1433-1444
    • /
    • 2016
  • South Korea is a maritime nation, surrounded by water on three sides; hence, it is important to preserve in a sustainable manner. Most areas, especially those bordering the East Sea, have been suffering from severe coastal erosion. Information on the sediment yield of a river basin is an important requirement for water resources development and management. In Korea, data on suspended sediment yield are limited owing to a lack of logistic support for systematic sediment sampling activities. This paper presents an integrated approach to estimate the sediment yield for ungauged coastal basins by using a soil erosion model and a sediment delivery rate model in a geographic information system (GIS)-based platform. For applying the sediment yield model, a basin specific parameter was validated on the basis of field data, that, ranging from 0.6 to 1.2 for the 19 gauging stations. The calculated specific sediment yield ranged from 17 to $181t/km^2.yr$ in the various basin sizes of Korea. We obtained reasonable sediment yield values when comparing the measured data trends around the world with those in Korean basins.

A study on sedimentation characteristic according to concentration change of top soil lost by flood (유실토양의 농도변화에 따른 침강특성에 대한 연구)

  • Jeon, Young-Bong;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.581-587
    • /
    • 2014
  • Sediment basin that is typical facility installed for development business to prevent soil erosion has low removal efficiency and therefore, it causes complaints from the residents and has a bad effect on ecosystem. Thus there is a limit to control soil erosion using the existing design methods of sediment basin, so the purposes of this study is providing suitable design factors for sediment basin with regarding soil characteristic of development areas and analysing sedimentation characteristic by inflow concentration changes. The results, for analyzing the sedimentation characteristic by soil concentrations within approximately 2,000 ~ 20,000 mg/L of initial SS concentration, indicated similar sedimentation trends for same soil in the supernatant regardless of initial concentrations. However, for different soil characteristic (percent finer), there are different results in sedimentation rate and concentrations of the supernatant. Thus it is recommended that sediment basin to prevent soil erosion during construction should be designed based on retention time derived from soil sedimentation experiments regardless of inlet concentration. In addition, installing the soil erosion prevention facility at the back to satisfy effluent water quality should be considered to minimize soil erosion effectively.

Comparison of Sulfate Reduction Rates Associated with Geochemical Characteristics at the Continental Slope and Basin Sediments in the Ulleung Basin, East Sea (동해 울릉분지에서 대륙사면과 분지 퇴적물의 지화학적 특성에 따른 황산염 환원 비교)

  • You, Ok-Rye;Mok, Jin-Sook;Kim, Sung-Han;Choi, Dong-Lim;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.299-307
    • /
    • 2010
  • In conjunction with geochemical characteristics, rate of sulfate reduction was investigated at two sediment sites in the continental slope and rise (basin) of the Ulleung Basin in the East Sea. Geochemical sediment analysis revealed that the surface sediments of the basin site (D2) were enriched with manganese oxides (348 ${\mu}mol$ $cm^{-3}$) and iron oxides (133 ${\mu}mol$ $cm^{-3}$), whereas total reduced sulfur (TRS) in the solid phase was nearly depleted. Sulfate reduction rates (SRRs) ranged from 20.96 to 92.87 nmol $cm^{-3}$ $d^{-1}$ at the slope site (M1) and from 0.65 to 22.32 nmol $cm^{-3}$ $d^{-1}$ at the basin site (D2). Depth integrated SRR within the top 10 cm depth of the slope site (M1; 5.25 mmol $m^{-2}$ $d^{-1}$) was approximately 6 times higher than that at the basin site (D2; 0.94 mmol $m^{-2}$ $d^{-1}$) despite high organic content (>2.0% dry wt.) in the sediment of both sites. The results indicate that the spatial variations of sulfate reduction are affected by the distribution of manganese oxide and iron oxide-enriched surface sediment of the Ulleung Basin.

Comparative Analysis by Soil Loss and Sediment Yield Analysis Calculation Method of River using RUSLE and GRID (RUSLE와 GRID를 이용한 하천의 토양유실량 및 유사유출량 산정방법별 비교분석)

  • Park, Eui-Jung;Kim, Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.112-121
    • /
    • 2007
  • In occasion of soil loss happened in a basin, soil in the near of a stream may flow into the stream easily, but in case that soil is far away from the stream, sediment yield transferred to rivers by rainfall diminishes. To forecast sediment yield of a stream is an essential item for management of basins and streams. Therefore, sediment yield of soil loss produced from a basin is needed to be calculated as accurate as possible. Purpose of the present research is to calculate soil erosion amount in a basin and to forecast sediment yield flowed into a stream by rainfall and analyze sediment yield in the stream. There are various methods that analyze sediment yield of rivers. In the present study, the soil erosion amount was calculated using Revised Universal Soil Loss Equation(RUSLE) and GRID, and sediment yield was calculated using sediment delivery ratio and empirical methods. DEM data, slope of basin, soil map and landuse constructed by GIS were used for input data of RUSLE. The upstream area of the Yeongsan river basin in Gwangju metropolitan city was selected for the study area. Three methods according to the calculation of LS factor were applied to estimate the soil erosion amount. Two sediment delivery ratio methods for the respective methods were applied and, correspondingly, six occasions in sediment yield were calculated. In addition, the above results were compared by relative amount with estimation by the empirical method of Ministry of Construction & Transportation. Sediment yield calculated in the present study may be utilized for the plan, design and management of dams and channels, and evaluation of disaster impact.

  • PDF