• 제목/요약/키워드: Sediment Load

검색결과 211건 처리시간 0.944초

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (II) : SEDIMENT TRANSPORT STUDY

  • Noh, Joon-Woon
    • Water Engineering Research
    • /
    • 제4권2호
    • /
    • pp.99-109
    • /
    • 2003
  • Since bed elevation changes are mainly dependent on the flow velocity and corresponding shear stress, it is possible to predict bed elevation numerically using velocity components. For the scour analysis due to channel contraction, a bed load transport model is developed and applied to estimate scour depth around coffer dam in the Mississippi River. During Phase I of the Lock & Dam No. 26 replacement project, a coffer dam was constructed to reduce the flow area approximately by 50%. Flow velocity increases due to the flow area reduction yields significant lowering (erosion) of the channel bed elevation. The proposed numerical model solves the sediment continuity equation using the finite element method to evaluate scour process in the vicinity of the coffer dam

  • PDF

수중둔덕의 거동특성 해석을 위한 수학적 모형 (Mathematical Model for Analysis on the Behaviours of Submerged Mound Constructed by the Dredged Materials)

  • 최한규;이오성
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.391-402
    • /
    • 1999
  • The numerical model predicting the behaviours of submerged mound constructed by dredged material is developed in this paper. The model is based on the Bailard's sediment transport formula, Stokes' second-order wave theory and the sediment balance equation. Nonlinear partial differential equation which is the same form as convection-dispersion equation which represents change of bed section can be obtained by substituting sediment transport equation for equation of sediment conservation. By this process, the analytical solution by which the characteristic of the behaviours of submerged mound can be estimated is derived by probably combining the convention coefficient and the dispersion coefficient governing the behaviours of submerged mound and the probability density function representing the wave characteristics. The validity of the analytical solution is verified by comparing the analytical solution which is assumed to estimate the movement rate submerged mound by bed-load with the field data of the past and its characteristic is analyzed quantitatively by obtaining the mean of the dispersion coefficient representing the extent of the decrease rate of the submerged mound height.

  • PDF

하천합류점의 하도특성치 변화에 관한 실험적 연구 (Experimental Study of Changes in Channel Characteristics at Stream Confluences)

  • 김태호
    • 대한지리학회지
    • /
    • 제32권4호
    • /
    • pp.421-434
    • /
    • 1997
  • 합류점에서 일어나는 하도의 조정양상과 그 변화에 영향을 미치는 요소를 조사히기 위하여 수리조건이 다른 두 하천을 합류시키는 수로실험을 실시했다. 하도횡단면의 크기와 형상은 각기 다른 요소의 지배를 받는다. 하도의 단면적과 유속이 주로 유량의 영향을 받는데 비하여 형태와 경사는 유량과 유송토사량의 상호관계에 의해 결정된다. 그 결과 합류점의 하도특성치 변화는 유량과 유송토사량의 상대적인 증가율에 따라 달라지는 유사농도의 변동상황에 의해 세 유형으로 구분된다. 합류점에서는 유슈의 수렴에 따른 유속의 급증현상으로 인하여 하도단면적과 하도경사는 예상보다 작은 변화를 보이므로 유사농도가 크게 증가하지 않는 경우에는 하도특성치 변화에 그 영향이 나타나기 어렵다.

  • PDF

SWAT-CUP을 이용한 유출 및 유사모의 불확실성 분석 (Uncertainty Analysis on the Simulations of Runoff and Sediment Using SWAT-CUP)

  • 김민호;허태영;정세웅
    • 한국물환경학회지
    • /
    • 제29권5호
    • /
    • pp.681-690
    • /
    • 2013
  • Watershed models have been increasingly used to support an integrated management of land and water, non-point source pollutants, and implement total daily maximum load policy. However, these models demand a great amount of input data, process parameters, a proper calibration, and sometimes result in significant uncertainty in the simulation results. For this reason, uncertainty analysis is necessary to minimize the risk in the use of the models for an important decision making. The objectives of this study were to evaluate three different uncertainty analysis algorithms (SUFI-2: Sequential Uncertainty Fitting-Ver.2, GLUE: Generalized Likelihood Uncertainty Estimation, ParaSol: Parameter Solution) that used to analyze the sensitivity of the SWAT(Soil and Water Assessment Tool) parameters and auto-calibration in a watershed, evaluate the uncertainties on the simulations of runoff and sediment load, and suggest alternatives to reduce the uncertainty. The results confirmed that the parameters which are most sensitive to runoff and sediment simulations were consistent in three algorithms although the order of importance is slightly different. In addition, there was no significant difference in the performance of auto-calibration results for runoff simulations. On the other hand, sediment calibration results showed less modeling efficiency compared to runoff simulations, which is probably due to the lack of measurement data. It is obvious that the parameter uncertainty in the sediment simulation is much grater than that in the runoff simulation. To decrease the uncertainty of SWAT simulations, it is recommended to estimate feasible ranges of model parameters, and obtain sufficient and reliable measurement data for the study site.

농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I) (Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I))

  • 권순국
    • 한국농공학회지
    • /
    • 제22권4호
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Undertow를 고려한 해빈단면지형 변화에 관한 연구 (A Study on Beach Profile Change in the Consideration of Undertow)

  • 손창배;김창제
    • 한국항만학회지
    • /
    • 제13권1호
    • /
    • pp.147-154
    • /
    • 1999
  • A Numerical model is developed in order to predict cross-shore beach profile change. In this model it is assumed that sediment transport is generated by waves(bed load transport suspended load transport) and undertow which is defined as offshore directional steady flow in the surf zone. In addition wave tank experiments which reproduce storm-surge were performed. By comparing resulting profile of calculation with experiments, the applicability of this method is verified.

  • PDF

Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India

  • Rai, Anant Kr.;Kumar, Arun
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.146-153
    • /
    • 2017
  • Sediment flow through hydropower components causes hydro-abrasive erosion resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance. Online instruments are required to measure/capture the variations in sediment parameters along with collecting samples manually to analyse in laboratory for verification. In this paper, various sediment parameters viz. size, concentration (TSS), shape and mineral composition relevant to hydro-abrasive erosion were measured and discussed with respect to a hydropower plant in Himalayan region, India. A multi-frequency acoustic instrument was installed at a desilting chamber to continuously monitor particle size distribution (PSD) and TSS entering the turbine during 27 May to 6 August 2015. The sediment parameters viz. TSS, size distribution, mineral composition and shape entering the turbine were also measured and analysed, using manual samples collected twice daily from hydropower plant, in laboratory with instruments based on laser diffraction, dynamic digital image processing, gravimetric method, conductivity, scanning electron microscope, X-ray diffraction and turbidity. The acoustic instrument was able to capture the variation in TSS; however, significant deviations were found between measured mean sediment sizes compared to values found in the laboratory. A good relation was found for turbidity ($R^2=0.86$) and laser diffraction ($R^2=0.93$) with TSS, which indicated that turbidimeter and laser diffraction instrument can be used for continuous monitoring of TSS at the plant. Total sediment load passed through penstock during study period was estimated to be 15,500 ton. This study shall be useful for researchers and hydropower managers in measuring/monitoring sediment for hydro-abrasive erosion study in hydropower plants.

유사운동과 유사량에 관한 연구 (Study on the Bed-Materials movement and Sedimentation.)

  • 홍승만
    • 한국농공학회지
    • /
    • 제18권1호
    • /
    • pp.4052-4063
    • /
    • 1976
  • The observation and Studies on the two stations in the Ansung river are included that were justified types of Bed-materials movement and were estimated loads volume of sediment applied by sediment rating curve and/or drivel formulars according to both stream conditions. The results of evaluation for above purpose are given as follows 1) Drived formulas for sediment computation in accordance with river situations are given as follows. -Suspended load Yu-chun Ts=135H4.55 Hye-hwa Ts=454H3.71 -Bed load Yu-chun Tb=75.4H191 Hye-hwa Tb=134.5H1.82 2) Annual volume of surface erosion in the catchment area were obtained at yu-chun of 0.236mm Hye-hwa of 0.200mm and mean depth of 0.22mm 3) The Bed-materials movement with water depth were represented that ripple is bellow than 0.067 meter at yu-chun and bellow than 0.096 meter at Hye-hwa stream, Dunes is 0.067-0.22 at yu-chun and 0.096-0.23 at Hye-hwa, Transition is 0.22-0.46 at yu-chun and 0.23-0.58 at Hye-hwa and Antidunes is higher than 0.46 at yu-chun and 0.58 of water depth at Hye-hwa stream

  • PDF

낙동강하구둑 상류 접근수로에서의 유사량 공식 및 유사 이송형태에 따른 하상변동 수치모의에 관한 연구 (Numerical Analysis for Bed Changes due to Sediment Transport Capacity Formulas and Sediment Transport Modes at the Upstream Approached Channel of the Nakdong River Estuary Barrage)

  • 지운;여운광;한승원
    • 한국수자원학회논문집
    • /
    • 제43권6호
    • /
    • pp.543-557
    • /
    • 2010
  • 본 논문에서는 2차원 하상변동 수치모형인 CCHE2D 모형을이용하여 유사량 공식과 유사이송형태별 이류-확산 방정식의 선택이 하상변동 수치모의결과 값에 미치는 영향을 분석하고 실제 현장자료와 비교하였다. 또한 이러한 분석을 기초로 낙동강하구둑 상류 접근수로에서의 최적의 유사량 공식과 유사 이송형태별 이류-확산 방정식을 제안하였다. 낙동강하구둑 상류 접근수로에 대해 Ackers and White와 Engelund and Hansen의 유사량 공식과 소류사와 부유사 유사 이송형태에 따른 이류-확산 방정식을 각각 다르게 적용하여 모의한 결과, Engelund and Hansen 공식을 적용한 경우에는 Ackers and White 공식을 적용한 경우와 비교했을 때, 평수 및 홍수 조건에서 모두 하상변동량이 거의 없는 것으로 나타났다. 또한 Ackers and White 공식으로 2002년에 발생한 실제 수문사상을 적용하여 하상변동 모의한 결과, 소류사 이송형태의 이류-확산 방정식을 적용한 모의결과가 부유사 이송형태를 적용했을 경우 보다 실제 하상변동에 더 근접한 것으로 나타났다.

청미천에서의 하천 유사 측정 및 분석(II) - 유사의 광물특성 및 오염도 - (Field Measurement and Analysis of Fluvial Sediment in the Cheongmi-Stream(II) - Mineralogical and Contaminative Characteristics of Sediment Particles -)

  • 우효섭;이진국
    • 물과 미래
    • /
    • 제24권3호
    • /
    • pp.49-60
    • /
    • 1991
  • 본 연구는 청미천에서의 하천유사의 측정 및 분석에 관한 연구의 제2편으로, 청미천의 원부교 및 한평교 지점에서 채취된 하상토의 광물특성 및 오염도를 분석하였다. 하상토의 광물특성 분석결과에 의하면, 청미천의 사질유사의 주 조성 광물은 석영이며 이 밖에 장석과 암편류가 상당량 포함되어 있어, 문헌상에 알려진 유사의 일반적인 광물특성 결과와 대체로 일치하고 있다. 또한, 사질유사의 형상계수(SF)는 약 0.7로서 외곡의 경우의 \ulcorner균 형상계수와 일치하고 있다. 한편, 점토질 유사의 광물구성 성분은 illite, kaolinite, chlorite 등이며 bentonite는 함유되어 있지 않다. 유수 및 하상토의 오염분석 결과에 의하면, 지표수와 하상토내 간극수의 유기물 및 중금속의 함유량은 큰 차이가 없는 것으로 나타났다. 이것은 시료를 채취한 시기가 '90년 9월 대홍수 직후이며 따라서 대부분의 기존 하상토 및 간극수가 하류로 쓰려 내려가고 상류에서 유수에 씻긴 신선한 하상토가 대신 덮혔기 때문으로 추정된다. 한편, 하상토의 대부분을 차지하는 모래의 경우 하상토와 주위 경작지의 중금속 함유량이 비슷하게 나타났으나, 이토 등 미립토사의 경우는 하상토가 주위 경작지보다 특히 수은 및 아연을 훨씬 많이 함유하고 있는 것으로 나타났다. 이러한 미립토사는 wash load의 형태로 하류로 이송되어 홍수터 등에 침전되어 새로운 오염원이 될 수 있다.

  • PDF