• Title/Summary/Keyword: Sedan

Search Result 63, Processing Time 0.023 seconds

Development of a Numerical Algorithm for the Evaluation of Aerodynamic Driving Stability of a Vehicle (주행차량의 공기역학적 주행안전성 평가를 위한 알고리즘 개발연구)

  • Kim, Chul-Ho;Kim, Chang-Sun;Lee, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.265-272
    • /
    • 2016
  • The objective of vehicle aerodynamic design is on the fuel economy, reduction of the harmful emission, minimizing the vibration and noise and the driving stability of the vehicle. Especially for a sedan, the driving stability of the vehicle is the main concern of the aerodynamic design of the vehicle indeed. In this theoretical study, an evaluation algorithm of aerodynamic driving stability of a vehicle was made to estimate the dynamic stability of a vehicle at the given driving condition on a road. For the stability evaluation of a driving vehicle, CFD simulation was conducted to have the rolling, pitching and yawing moments of a model vehicle and compared the values of the moments to the resistance moments. From the case study, it is found that a model sedan running at 100 km/h in speed on a straight level road is stable under the side wind with 45 m/s in speed. But the different results may be obtained on the buses and trucks because those vehicles have the wide side area. From the case study of the model vehicle moving on 100 km/h speed with 15 m/s side wind is evaluated using the numerical algorithm drawn from the study, the value of yawing moment is $608.6N{\cdot}m$, rolling moment $-641N{\cdot}m$ and pitching moment $3.9N{\cdot}m$. These values are smaller than each value of rotational resistance moment the model vehicle has, and therefore, the model vehicle's driving stability is guaranteed when driving 100 km/h with 15 m/s side wind.

Aggressive Driving Behavior in the Protected/Permissive Left Turn(PPLT) Intersections (보호/비보호좌회전(PPLT) 교차로에서의 공격적 운전행태 연구)

  • Oh, Do Hyung;Jang, Tae Youn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.28-38
    • /
    • 2017
  • The study is to analyze the aggressive driving behavior in the protected/permissive left turn(PPLT) intersections in Gunsan City. As a result of the logistic regression model, increasing of driver's age and driving experience, non-peak time, no company, sedan and male have a tendency to behave aggressive driving to the opposite vehicles. When the vehicles try to turn the unprotected left in the PPLT intersection, the opposite vehicle drivers recognize them at the aggressive driving behavior if the distance to opposite vehicles is not enough. The relationship between driver characteristics and the distance to the opposite vehicles is analyzed under aggressive driving behavior. increasing of age and company, peak time tend to influence the short distance opposite vehicles while male and higher driving experience the middle and long distance. Sedan has the aggressive possibility to shorter distance opposite vehicles rather than others.

Muffler Design Using Transmission Loss Prediction Considering Heat and Flow (열과 유동을 고려한 음장해석을 통한 머플러의 설계)

  • Kim, Hyunsu;Kang, Sang-Kyu;Lim, Yun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.600-605
    • /
    • 2014
  • Two mufflers for a large-size sedan are suggested aiming (1) sporty-sound and (2) quiet-sound as well as both satisfying low back-pressure and low manufacturing cost. Transmission loss prediction considering heat and flow may increase the accuracy and reduce the development cost in muffler design; thus, GT-power prediction considering heat, flow, and acoustics is utilized. By understanding the fundamentals of flow-acoustic theory in small orifice(hole), an effective muffler design concept is proposed. Vehicle tests show the consistence with predictions for sound; also a back-pressure test bench confirms the advantage in pressure drop for both suggested mufflers. Those suggested mufflers also have advantages in manufacturing cost due to simplicity of the design.

Study on Development of a Design Program for Torsion Beam Axle Suspension (Torsion Beam Axle 현가장치 설계전용 프로그램 개발을 위한 연구)

  • 이치범;현상혁;유홍희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.198-203
    • /
    • 2003
  • Due to the low production cost and space availability which are originated from the structural simplicity of the torsion beam axle suspension, the suspension has been frequently used for sedan and SUV style vehicles. The design procedure of the suspension, however, requires significant amount of time which prohibits more efficient design of the suspension. In this study, an integrated procedure and constituting modules are explained and the performance of the corresponding program is exhibited. The integrated procedure enables one to save the design time and cost significantly.

A Study on the Characteristics of DPF System of Peugeot 607 Diesel Passenger Car (Peugeot 607 경유승용차의 매연여과장치 특성 분석)

  • 김홍석;김진현;신동길;조규백;정용일;김강출;이영재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.66-74
    • /
    • 2004
  • DPF technology has been considered as one of the most effective methods for reducing diesel particulate emission. PSA Peugeot Citroen introduced the DPF equipped diesel passenger car, Peugeot 607 HDI Sedan, in 2000 for the first time in the world, in which SiC filter, an oxidation catalyst, cerium based fuel born catalyst and post-injection technology were used for PM regeneration. In the present study, the characteristics of the Peugeot 607 DPF system were studied on chassis dynamometer and real road driving conditions. The change of emissions and fuel economy during 80,000km operation were also tested. Additionally, ash contents accumulated in the DPF filter was analyzed and particle size distributions was investigated after running of 80,000km.

Microstructural Analysis of Local Tensile Deformation Characteristics in A356 Hollow Sand Cast Chassis Part (A356 중공 주조 샤시 부품에서의 국부적인 인장 변형 특성에 미치는 미세 조직 분석)

  • Kim, Jae-Joong;Ko, Young-Jin;Lim, Jong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Aluminum rear lower arm is designed for luxury sedan and manufactured by hollow sand casting in the present study. Here we present the relationship between local microstructure and coupon tensile test in the rear lower arm. The characteristics of the local tensile deformation are supposed to be dependent upon Si distribution and DAS (dendrite arm spacing). Si distribution affects the yield strength and DAS affects the elongation of local area in the part, respectively.

Headform Impact Test for Pedestrian Safety using Domestic Vehicles (국산자동차의 보행자 보호를 위한 머리모형 충격시험)

  • Yong, Boo-Joong;Kim, Si-Woo;Yoon, Kyong-Han
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.8-13
    • /
    • 2008
  • Since hundreds thousands of pedestrians are killed or injured in car accidents every year, a variety of research efforts have been performed to protect pedestrians in pedestrian-vehicle crashes. The IHRA reports that injuries on the child head, the adult head, and the adult lower leg/knee are the most critical in the crashes. Identifying the current status of international activities on pedestrian protection, this study, in particular, carries out headform impact test using selected domestic vehicles categorized by three groups - Sedan, SUV (Sport Utility Vehicle), and 1 Box (One Box) Vehicle. According to the valuable findings from the test results, this paper proposes a methodology under which the Korean Technical Regulation for protecting pedestrians in pedestrian-vehicle crashes will be developed.

Consideration on the Performance Evaluation Criteria & Test Data Analysis for the Roadside Safety Facilities (차량방호안전시설 성능평가기준 및 시험데이터 분석에 관한 고찰)

  • Lee, Changseok;Kim, Changhyun;Suk, Jusik;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.55-60
    • /
    • 2014
  • To verify the performance of roadside safety facilities, strength and occupant protection test are performed by evaluation criteria. Strength test use a truck and occupant protection test use a sedan. Strength perfomance is analyzed pass rate by post lateral resistance of the safety barrier. Occupant protection performance is analyzed from THIV(Theoretical Head Impact Velocity) and PHD(Post-impact Head Deceleration) by crash cushion test.

Vehicle Steering Characteristics Simulation by a Driver Model (운전자 모델을 사용한 차량의 조향특성 시뮬레이션)

  • Lee, J.S.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.61-68
    • /
    • 2003
  • Steering characteristics is an important factor in the evaluation of vehicle quality. To estimate steering characteristics in the vehicle conceptual design stage, vehicle dynamics simulation methods are very efficient. However, it is often difficult to simulate vehicle dynamics for the specific driving scenarios in open-loop driving environment. An efficient driver-in-the-loop vehicle model will be efficient for this job. A good tire model is also very important for the accurate vehicle dynamics simulation. In this research, a driver model is used to simulate vehicle steering dynamics for a 8-dof vehicle model with STI(Systems Technology, Inc.) tire model. For the demonstration of this model, a SUV(sports utility vehicle) and a sedan were simulated.

  • PDF