• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.028 seconds

Breast Cancer Images Classification using Convolution Neural Network

  • Mohammed Yahya Alzahrani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.113-120
    • /
    • 2023
  • One of the most prevalent disease among women that leads to death is breast cancer. It can be diagnosed by classifying tumors. There are two different types of tumors i.e: malignant and benign tumors. Physicians need a reliable diagnosis procedure to distinguish between these tumors. However, generally it is very difficult to distinguish tumors even by the experts. Thus, automation of diagnostic system is needed for diagnosing tumors. This paper attempts to improve the accuracy of breast cancer detection by utilizing deep learning convolutional neural network (CNN). Experiments are conducted using Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Compared to existing techniques, the used of CNN shows a better result and achieves 99.66%% in term of accuracy.

Classification for Imbalanced Breast Cancer Dataset Using Resampling Methods

  • Hana Babiker, Nassar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2023
  • Analyzing breast cancer patient files is becoming an exciting area of medical information analysis, especially with the increasing number of patient files. In this paper, breast cancer data is collected from Khartoum state hospital, and the dataset is classified into recurrence and no recurrence. The data is imbalanced, meaning that one of the two classes have more sample than the other. Many pre-processing techniques are applied to classify this imbalanced data, resampling, attribute selection, and handling missing values, and then different classifiers models are built. In the first experiment, five classifiers (ANN, REP TREE, SVM, and J48) are used, and in the second experiment, meta-learning algorithms (Bagging, Boosting, and Random subspace). Finally, the ensemble model is used. The best result was obtained from the ensemble model (Boosting with J48) with the highest accuracy 95.2797% among all the algorithms, followed by Bagging with J48(90.559%) and random subspace with J48(84.2657%). The breast cancer imbalanced dataset was classified into recurrence, and no recurrence with different classified algorithms and the best result was obtained from the ensemble model.

A Review of Structural Testing Methods for ASIC based AI Accelerators

  • Umair, Saeed;Irfan Ali, Tunio;Majid, Hussain;Fayaz Ahmed, Memon;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • Implementing conventional DFT solution for arrays of DNN accelerators having large number of processing elements (PEs), without considering architectural characteristics of PEs may incur overwhelming test overheads. Recent DFT based techniques have utilized the homogeneity and dataflow of arrays at PE-level and Core-level for obtaining reduction in; test pattern volume, test time, test power and ATPG runtime. This paper reviews these contemporary test solutions for ASIC based DNN accelerators. Mainly, the proposed test architectures, pattern application method with their objectives are reviewed. It is observed that exploitation of architectural characteristic such as homogeneity and dataflow of PEs/ arrays results in reduced test overheads.

A Review of Facial Expression Recognition Issues, Challenges, and Future Research Direction

  • Yan, Bowen;Azween, Abdullah;Lorita, Angeline;S.H., Kok
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.125-139
    • /
    • 2023
  • Facial expression recognition, a topical problem in the field of computer vision and pattern recognition, is a direct means of recognizing human emotions and behaviors. This paper first summarizes the datasets commonly used for expression recognition and their associated characteristics and presents traditional machine learning algorithms and their benefits and drawbacks from three key techniques of face expression; image pre-processing, feature extraction, and expression classification. Deep learning-oriented expression recognition methods and various algorithmic framework performances are also analyzed and compared. Finally, the current barriers to facial expression recognition and potential developments are highlighted.

Frequency Matrix Based Summaries of Negative and Positive Reviews

  • Almuhannad Sulaiman Alorfi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.101-109
    • /
    • 2023
  • This paper discusses the use of sentiment analysis and text summarization techniques to extract valuable information from the large volume of user-generated content such as reviews, comments, and feedback on online platforms and social media. The paper highlights the effectiveness of sentiment analysis in identifying positive and negative reviews and the importance of summarizing such text to facilitate comprehension and convey essential findings to readers. The proposed work focuses on summarizing all positive and negative reviews to enhance product quality, and the performance of the generated summaries is measured using ROUGE scores. The results show promising outcomes for the developed methods in summarizing user-generated content.

SEQUENTIAL MINIMAL OPTIMIZATION WITH RANDOM FOREST ALGORITHM (SMORF) USING TWITTER CLASSIFICATION TECHNIQUES

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.

Introducing the Concept of Intelligent Financial Inclusion

  • Anam Yasir;Alia Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.103-110
    • /
    • 2023
  • Financial inclusion is the safe and timely access of formal financial services to people at affordable costs. Various barriers of legacy financial system hinder the involvement of all segments of populations in the financial sector. The journey from financial exclusion to financial inclusion has to be achieved with the implementation of technological breakthroughs. Covid-19 has also raised the need for technology in all sectors of the economy. This research paper introduces the concept of intelligent financial inclusion which is the provision of financial services to people with the help of intelligent systems. This intelligent system will take the concepts from the human mind, cognitive sciences, and artificial intelligence tools and techniques. For achieving the optimal level of financial inclusion, economies must shift their financial sector from traditional means to intelligent financial systems. In this way, intelligent financial inclusion will achieve the target of involving all people in the financial sector.

Applications and Challenges of Deep Learning and Non-Deep Learning Techniques in Video Compression Approaches

  • K. Siva Kumar;P. Bindhu Madhavi;K. Janaki
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.140-146
    • /
    • 2023
  • A detailed survey, applications and challenges of video encoding-decoding systems is discussed in this paper. A novel architecture has also been set aside for future work in the same direction. The literature reviews span the years 1960 to the present, highlighting the benchmark methods proposed by notable academics in the field of video compression. The timeline used to illustrate the review is divided into three sections. Classical methods, conventional heuristic methods, and current deep learning algorithms are all used for video compression in these categories. The milestone contributions are discussed for each category. The methods are summarized in various tables, along with their benefits and drawbacks. The summary also includes some comments regarding specific approaches. Existing studies' shortcomings are thoroughly described, allowing potential researchers to plot a course for future research. Finally, a closing note is made, as well as future work in the same direction.

Bitcoin Algorithm Trading using Genetic Programming

  • Monira Essa Aloud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.210-218
    • /
    • 2023
  • The author presents a simple data-driven intraday technical indicator trading approach based on Genetic Programming (GP) for return forecasting in the Bitcoin market. We use five trend-following technical indicators as input to GP for developing trading rules. Using data on daily Bitcoin historical prices from January 2017 to February 2020, our principal results show that the combination of technical analysis indicators and Artificial Intelligence (AI) techniques, primarily GP, is a potential forecasting tool for Bitcoin prices, even outperforming the buy-and-hold strategy. Sensitivity analysis is employed to adjust the number and values of variables, activation functions, and fitness functions of the GP-based system to verify our approach's robustness.

Privacy Protection using Adversarial AI Attack Techniques (적대적 AI 공격 기법을 활용한 프라이버시 보호)

  • Beom-Gi Lee;Hyun-A Noh;Yubin Choi;Seo-Young Lee;Gyuyoung Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.912-913
    • /
    • 2023
  • 이미지 처리에 관한 인공지능 모델의 발전에 따라 개인정보 유출 문제가 가속화되고 있다. 인공지능은 다방면으로 삶에 편리함을 제공하지만, 딥러닝 기술은 적대적 예제에 취약성을 보이기 때문에, 개인은 보안에 취약한 대상이 된다. 본 연구는 ResNet18 신경망 모델에 얼굴이미지를 학습시킨 후, Shadow Attack을 사용하여 입력 이미지에 대한 AI 분류 정확도를 의도적으로 저하시켜, 허가받지 않은 이미지의 인식율을 낮출 수 있도록 구현하였으며 그 성능을 실험을 통해 입증하였다.