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Abstract 
Implementing conventional DFT solution for arrays of DNN 
accelerators having large number of processing elements (PEs), 
without considering architectural characteristics of PEs may 
incur overwhelming test overheads. Recent DFT based 
techniques have utilized the homogeneity and dataflow of arrays 
at PE-level and Core-level for obtaining reduction in; test pattern 
volume, test time, test power and ATPG runtime. This paper 
reviews these contemporary test solutions for ASIC based DNN 
accelerators. Mainly, the proposed test architectures, pattern 
application method with their objectives are reviewed. It is 
observed that exploitation of architectural characteristic such as 
homogeneity and dataflow of PEs/ arrays results in reduced test 
overheads. 
Keywords: 
Accelerator, Artificial Intelligence, Design-for-Testability, DNN, 
testing. 
 

1. Introduction 
 

Recently, it has been reported that AI based electronic 
devices will see about 18 percent annual growth over the 
next few years. And AI based electronic devices may 
generate around $67 billion in revenue by the year 2025 
with a 20% share of the total market [1]. Recent 
advancements in classification accuracy of Deep Neural 
Networks (DNNs) in various domains i.e., speech 
recognition [2], image recognition [3] and sound 
recognition has allowed integration in various application 
platforms such as datacenters [4], automotives [5] and 
other edge applications etc. Specifically, these real-time 
applications execute inference operations, where already 
trained weights are used. Implementing this inference 
operation involves loading trained weights inside layers, 
where activation and trained weights are multiplied to 
generate weighted sums [6]. These weighted sums are then 
accumulated in an Accumulator unit. A non-linear 

function like ReLu is performed over this accumulated 
sum response [7]. This matrix-multiplication based  

 
 
 

inference operations is physically embedded on hardware 
accelerators. These hardware accelerators consist of array 
of 1000s of identical PEs to perform multiply-and-
accumulate (MAC) operations over input activations and 
trained weights. The advancement of AI applications is 
coupled with improvement in these accelerator 
architectures.  

These accelerators may be implemented on application 
specific integrated circuits (ASICs) [8], field 
programmable gate arrays (FPGAs) [9], or graphics 
processing unit (GPUs) [10]. Mainstream tech companies 
such as Google Inc., Tesla Inc., NVIDIA Inc., Graphcore, 
Enflame etc. have designed their custom DNN 
accelerators for optimized performance for their respective 
application domains [4,11,12,13,14].  Because of the 
reduced energy consumption (with less frequent memory 
access) and lesser data bandwidth, most ASIC based 
accelerators use spatial dataflow among interconnected 
PEs. This results in efficiency of throughput and energy 
consumption. For this reason, academia and industry have 
focused on developing specialized architectures of 
accelerators with focus on increasing throughput and 
reducing energy consumption [15,16,17,18].  

Structural testing is an essential phase during 
manufacturing of any electronic systems. And with built-
in testing method, periodical testing during infield 
operation can be performed to ensure functional and 
structural integrity of the system. Previously, it was shown 
that because of their learning algorithms, deep learning-
based operations are inherently error resilient [19,20,[21]. 
But recent work has signified the impact of permanent 
faults i.e., stuck-at faults on the inference classification 
accuracy. It was shown that stuck-at faults in 0.005% 
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faulty PEs /MACs degrades the classification accuracy 
from 74.13% to 39.69% [22]. Also, it is demonstrated in 
another study that 0.0003% faults in an accelerator drops 
the classification accuracy from 97.4% to 7.75% [23]. The 
reason for this drastic drop in accuracy is because of 
permanent faults can affect the higher order bits of th e 
weighted sum of the MAC, which increases the error for 
generated weighted sum [22,[23]. Such observations 
substantiate the need for structural test solutions for 
reliable production and operation of DNN accelerators. 

Full scan-based EDT [24], Hierarchical ATPG [25], 
LBIST [26,[27] are primary off-the-shelf test solutions for 
testing of permanent faults. Incorporating these 
conventional test solutions can expedite time-to-market 
constraint for rapidly growing AI industry, specifically for 
ASIC based DNN accelerators. However, implementing 
such solutions on array level (with 1000s of PEs) can be 
inefficient in terms of test data volume, test time, test 
power and area overhead [28]. If not efficiently addressed, 
these test constraints can severely affect the overall 
manufacturing cost of AI accelerator. And if an 
accelerator is to be tested infield, then the BIST test power 
consumption can determine the package cost (for cooling 
mechanism) of the accelerator. Hence, the testing solution 
must be a cost-effective solution. In this paper, we first 
present conventional test solution based on state-of-the-art. 
Then novel test solutions are presented, these test 
solutions exploit the homogeneity/ regularity and dataflow 
of interconnected PEs of the array. The resulting novel test 
architectures are efficient in terms of test data volume, test 
time and test power. The rest of the paper is organized as 
follows.  
• Section 2 briefly presents ASIC based DNN accelerators 
for which the test solutions were developed. 
• Section 3 presents Core-level testability solutions based 
on state-of-the-art EDT, Hierarchical ATPG and LBIST. 
• Section 4 presents techniques based on PE-level 
testability. 
• Section 5 summarizes the paper. 

2. ASIC based DNN Accelerators 

In this section, we will highlight the architectural 
characteristics of DNN accelerators for which the DFT 
solutions were implemented. 

 
2.1 Graphcore’s AI chip 

The shows the architecture of Graphcore’s AI chip[29]. 
Where a ‘tile’ is the basic processing unit of this chip. 
This tile contains an intelligence processing unit (IPU) and 
associated memory units. Due to high density of the chip, 

multiple tiles are grouped together to form a Supertile. It’s 
a massive SoC, where an interconnect unit called the 
Exchange facilitates the communication among these 
Supertiles. 

2.2 Enflame’s DTU 

Fig. 2 shows Enflame’s deep-thinking unit (DTU), This 
DTU is also used as convolution neural network (CNN) 
inference acceleration [30]. It is specifically designed for 
Datacenters. It contains 4 Smart Intelligence Clusters 
(SICs). Where, an SIC contains 8 identical processing 
units called Smart Intelligent Processors (SIPs). Each SIP 

has 8 identical DSP cores along with other cores.  

2.3 Tesla’s NPU based FSD 

Tesla Inc. have custom designed their own full self-
driving (FSD) chip for their autonomous vehicles [11]. It 

 
Fig. 2 Graphcore’s AI SoC [29] 

 
Fig. 1 Enflame’s DTU [30] 

 
Fig. 1 Tesla’s FSD chip [11] 
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includes 2 neural processing units (NPU), shown in Fig. 3.   
This NPU is a 96x96 MAC array. The MAC array is used 
for inference acceleration for CNNs. A single MAC array 
contains 9216 PEs. Each PE shares connection with 
activation and weight memory to load the activation inputs 
and trained weights respectively. The PEs are 
interconnected to allow transfer of weighted sum output in 
cascaded manner via each column of PEs.   

2.4 Google’s TPU 

Google Inc. was the first one to implement its own 
custom accelerator for inference application at their 
Datacenters [4]. This tensor processing unit (TPU) 
contains a MAC array of 256x256 systolically 
interconnected 65536 PEs, shown in Fig. 4. The 
architecture of the MAC array is weight-stationary systolic 
architecture [31]. It is specifically designed for CNN 
inference which utilizes trained weights reusability. The 
trained weights are loaded in systolic manner from the 
weight memory. After the array is loaded with trained 
wights, operational cycles are used to load the activation 
inputs and to generate and shift the weighted sums through 
PEs. In this systolic accelerator, a permanent fault 
manifested in the Datapath inside a PE can propagate 
systolically to other PEs. This will exacerbate the 
classification accuracy by affecting other PEs and their 
results to a significant level [23]. As it will be shown in 
the next section, most of the DFT based test solutions are 
proposed for this TPU and mainly exploit the systolic 
dataflow for application of test patterns. 

 

   
Fig.  2. Google’s weight stationary systolic TPU [4] 

3. Core-level test solutions 

The DNN accelerators present homogeneity at different 
levels i.e., Core (group of many PEs) and PE. In this 
section, case studies will be presented, which address the 
testability at Core-levels. These Core-level solutions 
provide ease of testing by utilizing state-of-the-art full 
scan based EDT, wrapper logic and Hierarchical ATPG. 

3.1 Graphcore’s Hierarchical ATPG based 
solution  

A case study for testing solution is presented for 
Graphcore’s DNN accelerators in [29]. With a huge 
number of transistors i.e., 24 billion, the objective of the 
DFT insertion was set for faster time-to-market with less 
test power, test pins and scan data volume. To achieve this, 
Hierarchical ATPG was enabled for a single supertile and 

the ATPG is repeated for remaining tiles. This reduces the 
test data volume and the overall test time. As shown in  
Fig. 5, the DFT was inserted at supertile level with logic 
BIST and memory BIST, which was reused 304 times for 
the entire chip (for 304 Superiles). 

Using BIST modules with only seeds and signatures 
storage memory requirement, allowed reduction in test 
data volume. Majority of faults for supertiles were tested 
with LBIST whereas the remaining faults were tested with 
EDT (to ensure higher fault coverage). Moreover, to 
reduce the test pins at input, channel broadcasting was 
used for identical cores for application of test patterns. For 
reducing the output pin requirement, test output is done 
with MUX having non-overlapping modes, this is shown 
in Fig. 6. The test power was controlled with insertion of 
low toggle rate patterns in BIST and with clock gating. 

 

 
Fig. 6. DFT logic for enabling scan out from ST [29]  
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3.2  Enflame’s EDT based Solution. 

A similar approach is observed for Enflame’s 14 
billion transistor chip [30]. To find an optimal test solution, 
different methods are explored as shown in Fig. 7. In the 
first method, the homogeneity of cores is not used for 

ATPG generation and DFT insertion. And the whole 
module is subjected to test pattern generation with EDT, 
shown in Fig. 7(a). This black-box approach results in 
lesser routing congestion but higher number of patterns, 
with repeated pattern generation for same faults (in 
identical cores). In the second approach the identical 
nature of cores is used for EDT logic and ATPG 

generation.   The patterns are applied with simultaneous 

broadcasting of the same test patterns to input channels of 
identical cores, shown in Fig. 7(b). Compared with the 
previous approach this approach results in lower ATPG 
pattern count and runtime. Since the faults in cores are 
same then same scan patterns can be applied to each core. 
This approach is used to reduce the EDT logic overhead, 
shown in Fig. 7(c). But due to internal broadcasting, the 
routing congestion is high in this case. 

EDT is used at core level for test data compression. 
To alleviate the issue of limited test pins, pattern sharing is 
used. This can be done for identical and non-identical 
cores. The test patterns are broadcasted simultaneously to 
identical cores, number of such cores is limited by the shift 
power budget. Fig. 8 shows the broadcasting configuration 
for cores with isolation wrappers. This configuration 
results in reduced test data and short ATPG runtime. While 
other configurations like scan chain sharing increases 
routing overhead and congestion and applying EDT to 
non-shared cores can increase ATPG runtime and test data 
volume. 

3.3 LBIST based test solution 

Automotive electronics is a rapidly expanding domain 
for DNN accelerators for application such as autonomous 
driving. For such automotive DNN accelerators, an infield 
test solution such as LBIST is necessary to commence 
periodical testing and ensure reliable operation as per ISO 
26262 [32]. With its built-in LFSR based pseudorandom 
pattern generator and MISR based signature analysis, the 
LBIST provides ease of integration into automotive 
hardware as a safety mechanism [27]. However, the 
pseudorandom nature of LBIST scan patterns suffer from 
some drawbacks, such as low fault coverage, increased 
shift power and test time and aliasing error.  

 
Fig. 3. Supertile level DFT implementation [29] 

    
a) 

 
b) 

                          
c)       

Fig. 7. Three possible configurations for EDT 
implemenation [30] 

 
Fig. 8. Pattern broadcasting for identical and non-

identical cores [30] 

 
Fig. 9. Time multiplexed pattern loading into multiple sub 

arrays [32] 
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To overcome these LBIST related issues, a time division 
multiplexing based LBIST is presented with concurrent error 
checking circuitry for DNN accelerator array testing, shown in 
Fig. 9.  The array module is sub divided into homogenous 
smaller sub arrays, where arrays are clocked with time-
multiplexed clock cycles during scan operation. An array 
partitioning algorithm is used, with peak power as the main 
constraint. Since patterns are applied to a smaller array, a 
proportional reduction in the number of test patterns, test time 
and peak shift power is achieved. Also, the proposed method 
uses combinational logic for concurrent error checking, which is 
free from aliasing problem. Compared to MISR, where error is 
detected at the end of the shift-out operation, this method 
provides much faster detection of faults in case of mismatch i.e. 
presence of faults. 

3.4  Summary of Core-level testing approach 

Using state-of-the-art like LBIST, Hierarchical ATPG and 
EDT allows for faster DFT implementation. Moreover, these 
case studies have also exploited the regularity/ homogeneity of 
identical cores to reduce the test data volume and lesser ATPG 
run time. The former feature will require less ATE memory 
requirement allowing more units to be tested simultaneously. 
Whereas the latter factor impacts the time-to-market and 
consequently the cost of the accelerator. However, this DFT 
approach needs additional overheads like wrapper logic, EDT 
controller logic, clock control logic. This additional logic may be 
a smaller percentage of a massive chip such as Graphcore’s and 
Enflame’s but this excessive DFT logic overhead may not be an 
efficient solution for edge-based DNN accelerators with their 
smaller size and power footprint. Moreover, it is observed that 
classification accuracy is largely affected by stuck-at faults of 
the MAC circuitry inside a PE [22],[23]. So high fault coverage 
at PE-level is desirable for comprehensive testing because using 
LBIST on core-level may not ensure high coverage at PE-level. 
And with this shortcoming, some critical faults can escape and 
may deteriorate the accuracy by affecting the high order bits of 
MAC circuit of a PE. 

4. PE-level testability based solutions 

The above test solutions have exploited the 
homogeneity on Core-levels with multiple identical PEs 
inside each core. However, the smallest replicable unit is 

the PE and testability can be confined to these PEs, which 
can further optimize the ATPG effort and reduce the test 
overheads.  C-testing is a class of array testing method, 
where constant number of functional patterns are used to 
detect single faulty cell in the array of identical elements 
[33]-[39]. In the context of DNN accelerator with 
thousands of identical PEs, constant number of structural 
test pattern generated for one PE/ MAC can be applied to 
whole array. This will reduce the testability effort i.e., 
ATPG effort, test time and test data volume to a single PE/ 
MAC. In this section, such PE-level based testability 
techniques are presented. 

4.1 Checkerboard-style C-testing 

The concept of structural C-testing has been realized 
for TPU’s systolic array by generating structural test 
patterns for smallest replicable unit i.e., PE [40]. This 
approach minimizes the ATPG effort and culminates 
wrapper and EDT logic overhead. As the ATPG generates 
the scan patterns for a single PE, the solution is scalable 
for any array size. The PEs of the array are not usually 
wrapped by flops. So, this technique uses flops of the 
adjacent PEs (in addition to flops of the tested PE) for 
application of test pattern and to capture test responses. 
With reconfigurable scan architecture, the method uses the 
systolic dataflow for application of test patterns. The scan 
chains are inserted at the PE-level with a one scan chain 
per PE. Additional MUX logic is used to allow the 
iterations based scan-in and scan-out operations as shown 
in Fig. 10. This enables scan pattern applications from 
four adjacent PEs with four iterations in checker-board 
style. So, alternate PEs and in rows and columns are tested 
simultaneously in each iteration (shown in Fig. 11). 

4.2 Partial scan based testing  

 
Fig. 10. DFT logic for enabling checkerboard style testing [40].  

Fig. 11. Checkerboard styled iterations [40].  
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This technique also uses the systolic flow to deliver 
partial scan test pattern on PE-level [41]. The patterns are 
generated for combinational multiplier and adder logic of 
the PE. As shown in Fig. 12 & Fig. 13. A portion of the 
test pattern is applied functionally via activation and 
weight register to the combinational logic. And the 
remaining portion of scan test pattern is broadcasted to 
scan chains of summation circuitry inside each PE. The 
proposed method is also able to perform functional test on 
PE-level for functional test patterns. Since only a subset of 
scan flops are  used, a significant reduction in test time 
and test power is observed for stuck-at and transition test 
patterns. The patterns are generated for combinational 

MAC circuitry of PE, which further reduces the ATPG 
effort compared to [40]. Fault coverage of this method is 
100%. The activation and weight test patterns are 
functionally loaded from activation and weight memories; 
this allows testing of primary inputs of boundary PEs. For 
test response checking an integral combinational 
comparison logic is used to detect mismatch among PE 
responses, this comparison is based on the probability that 
majority of the PEs are non-faulty. Since this is a partial 
scan approach, full scan based conventional delay fault 
testing methods cannot be used. To enable delay fault 
testing, an innovative LoC based method is proposed. In 
this method, vector pairs are loaded into PE’s registers in a 
systolic manner. Thereby, launching transitions and 
capturing their responses systolically. 

A major portion of combinational logic i.e., the 
multiplier is directly connected to activation and weight 
registers inside a PE. With full scan, serial shift of scan 
patterns through these scan elements causes higher 
switching power in each PE. Combined for the whole 
array, an exponential increase in shift power will occur. So, 
in comparison to full scan, with thepartial scan method a 
major test power overhead is saved by using non-scan 
activation and weight register. To ensure C-testability of 
the proposed method, the array is sub-divided into smaller 
groups of PEs. Since the method uses unconventional test 
pattern application method a novel delay fault testing 
method based on Launch-on-Capture (LoC) is proposed, 
shown in Fig. 13. As the partial scan based technique 
generates patterns for the MAC only so compared with 

[40] it requires less number of patterns and required test 
time. 

4.3 Non-scan based structural testing 

The combinational logic of a MAC is a main compo
nent that affects the classification accuracy. Because of 
this fact a non-scan based test pattern application meth
od is presented to test combinational logic of multiplier an
d adder circuitry of each PE in [42]. With systolic flow, w

Fig. 13. Delay fault testing for partial scan method  [41].  

 
Fig. 14. Parallel pattern application to a non-
scan PE with the additional MUX [42].  

 
Fig. 12. Partial scan based scan-in, scan-out with 
comparison logic for stuck-at fault testing [41].  
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eight register and activation register are already controllab
le. However, partial sum capturing register is not controlla
ble because it is connected to the output of the MAC only. 
For application of test patterns, sum register is made contr
ollable with an additional MUX logic as shown in Fig. 14. 
Since patterns are applied via memory units and test patter
ns are applied functionally, all the primary inputs, primary 
outputs, and functional paths (interconnect among PEs) of 
the entire array are tested, this results in 100% coverage. 

Moreover, it is known that the scan test patterns incur 
high switching activity during serial shift operations. This 
high activity gives rise to high switching power in 
combinational logic of PEs. So, by loading test patterns is 
parallel with the aid of systolic flow results in lesser test 
switching and peak power. Hence, compared to array level 
full scan DFT, this technique with its parallel pattern 
loading is more test time and test power efficient.  

4.4 YAOTA 

Further optimization of test pattern generation is done 
in YAOTA: Yield and Accuracy aware Optimum Test of 
DNN Accelerators [43]. Practically, for inference 
operation a large proportion of the weights is assigned to 
zero weights and can be pruned. This fact signifies that not 
every PE in an array have same level of impact and 
contribution on classification accuracy. And even in the 
presence of some faulty PEs the accelerator can still be 
used for non-critical applications. Based on this fact, a 
fault rate aware testing is proposed, where MAC faults are 
categorized based on their criticality assessment. To assess 
the criticality of faults, faults are injected into gate-level 
netlist combinational adder-multiplier logic. As shown in 
Fig. 15., the faults affecting the logic cone for the MSBs 
are regarded as critical and faults affecting the logic cone 
of LSBs are regarded as non-critical. 

Then PEs are applied with structural test pattern in 
broadcast manner to all PEs in two phases i.e., i) to detect 
PEs with non-critical faults and ii) PEs with critical faults. 
It can be seen in Fig that positional weight of the MAC 
output bits has varied impact on accuracy. Faults in logic 
cone of the MSBs have more impact and are regarded as 
critical faults. Since accelerators with non-critical PEs ca 
still be used, an enhancement in yield for accelerators can 
be achieved by using the accelerators having non-critical 
faulty PEs.  

4.5 Master-Slave based testing 

The full scan DFT provides maximum observability 
and controllability for detection of stuck-at faults. 
Additionally, full scan support for Launch-on-Capture 
(LoC) and Launch-on-Shift (LoS) allows for detection of 
delay faults. These features make the full scan a 
comprehensive test solution. However, a major 
disadvantage is the serial scan shift power consumption of 
scan shift operations. To implement a full scan based DFT 
along with reduced test power, a novel technique is 
presented in [44]. As show in Fig. 16., PEs are grouped 
into sub arrays. This grouping of PEs into sub arrays is 
done by considering (not exceeding) peak and shift power 
limitations. Each sub array has one Master PE and 
multiple Slave PEs. The Master directly loads the pattern 
from ATE and consequent responses are checked with 
ATE. The Slave PEs take input test pattern from the 
adjacent Master PEs. This allows parallel pattern 
application into majority of PEs, thereby reducing the 
overall test time without exceeding test power limits.  

This technique enables fault localization on PE-level 
along with the test compaction. The sequence for fault 
localization is initiated in response to detection of faulty 
PE in a sub array. Since the array is divided into smaller 
sub arrays and sub arrays are tested simultaneously, the 
time to detect the faulty PE is shortened. This fault 
localization can aid in fault diagnosis to improve the yield 
and allow pruning for faulty PEs [44]-[48]. Also, the 
Master PE in each sub array is tested and compared with 
external ATE. So, comparing the responses of the Slave 
PEs against the Master’s response results in zero aliasing 
probability. 
 

4.6 Summary of PE-level based solutions 

Using same test patterns for a group of or all of PEs 
result in test data volume reduction. The application 
method of these patterns is subject to constraints such as 

 
Fig. 15. MSB and LSB logic cone separation in a MAC 
circuit based on criticality [43].  

 
Fig. 16. Master-Slave configuration of PEs in a 
subarray to enable pattern loading [44].  
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test time, test power, routing congestion. With systolic 
architecture based accelerators, there is a means for test 
dataflow among neighboring elements, which minimizes 
the requirement for extra test input pins to access a large 
number of PEs. Generating and applying test patterns on 
PE-level ensures maximum fault coverage of the whole 
array and reduces the ATPG runtime. Further optimization 
of test patterns can be done to target critical faults of MAC. 
The test data volume is further reduced by enabling built-
in response checking by detecting mismatch in responses 
of identical PEs. By addressing testability at PE-level fault 
localization is enabled, which can provide pruning of 
faulty PEs and fault diagnosis to improve the yield. 
However, these solutions are proposed for structural 
testing at manufacturing stage of DNN accelerators. For 
real time applications such as autonomous automotives an 
infield testing method is necessary.  
 

5.  Summary and future directions 

Permanent faults in the array of identical PEs can 
affect the yield and classification accuracy of the DNN 
accelerators. Testing these faults can ensure; i) higher 
yield, which results in reduced cost production of these 
accelerators and ii) reliable operation by detecting the 
faults affecting the classification accuracy. Testing 
methods are evolving with the evolution in architecture of 
DNN accelerators, with each one prioritizing different 
constraint i.e., yield, test time, test power, area overhead 
and test data volume. However, there is a need for a 
generic test solution for array module of accelerators. 
Which can exploit the homogeneity of the array for pattern 
applications and response checking. The solution should 
be configurable enough to target various kind of array 
architecture i.e., weight stationary, row stationary, non-
systolic, SIMD. Also, it should be capable of exploiting 
homogeneity at Core and PE levels. 
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