• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.028 seconds

A Study of IP Spoofing Attack and Defense Through Proxy Server (Proxy Server를 통한 IP Spoofing 공격과 방어 연구)

  • Lee, Bo-Man;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.281-284
    • /
    • 2010
  • The characteristics of International Hacking is that because even if with tracing techniques, nobody can find Real IP address of the attacker so it is true that Great difficulty in the investigation. so that an attacker goes through the Proxy Server Many times and they use techniques of IP Spoofing to hide their IP address. In this paper, study How attackers use IP Spoofing Technique and the application of Proxy Server. In addition, to Propose IP Spoofing attacks through the Proxy Server attack and defend methods also IP traceback methods so this study materials will contribute to the development of International Hacking and Security Protection Technology.

  • PDF

Limitations and Improvements of Adoption Criteria for Digital Forensic Evidence (디지털 포렌식 증거 채택 기준의 한계와 개선 방안)

  • Kim, Minsu
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2018
  • Currently, digital evidence takes judicial discretion in adopting it, which does not clarify the criteria for adoption, and it can shorten the analysis time of digital evidence with distributed processing techniques. However, due to the development of cryptographic techniques, there is a problem in that it is not suitable for the 48 hour limit of the warrant request. In this paper, we analyze the precedents for admissibility of evidence and the probative power in the civil/criminal proceedings, and discuss the need for objective and detailed adoption criteria to replace judicial discretion. In addition, we'd like to propose a preliminary application form for analysis of digital evidence as a problem for limit time for warrant claims from the perspective of forensics and a solution to the problem.

  • PDF

The Bayesian Framework based on Graphics for the Behavior Profiling (행위 프로파일링을 위한 그래픽 기반의 베이지안 프레임워크)

  • 차병래
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.69-78
    • /
    • 2004
  • The change of attack techniques paradigm was begun by fast extension of the latest Internet and new attack form appearing. But, Most intrusion detection systems detect only known attack type as IDS is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, the experiments to apply various techniques of anomaly detection are appearing. In this paper, we propose an behavior profiling method using Bayesian framework based on graphics from audit data and visualize behavior profile to detect/analyze anomaly behavior. We achieve simulation to translate host/network audit data into BF-XML which is behavior profile of semi-structured data type for anomaly detection and to visualize BF-XML as SVG.

An Watermarking Algorithm for Multimodal Biometric Systems (다중 생체인식 시스템에 적합한 워터마킹 알고리즘)

  • Moon, Dae-Sung;Jung, Seung-Hwan;Kim, Tae-Hae;Chung, Yong-Wha;Moon, Ki-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.93-100
    • /
    • 2005
  • In this paper, we describe biometric watermarking techniques for secure user verification on the remote, multimodal biometric system employing both fingerprint and face information, and compare their effects on verification accuracy quantitatively. To hide biometric data with watermarking techniques, we first consider possible two scenarios. In the scenario 1, we use a fingerprint image as a cover work and hide facial features into it. On the contrary, we hide fingerprint features into a facial image in the Scenario 2. Based on the experimental results, we confirm that the Scenario 2 is superior to the Scenario 1 in terms of the verification accuracy of the watermarking image.

Obesity Level Prediction Based on Data Mining Techniques

  • Alqahtani, Asma;Albuainin, Fatima;Alrayes, Rana;Al muhanna, Noura;Alyahyan, Eyman;Aldahasi, Ezaz
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.103-111
    • /
    • 2021
  • Obesity affects individuals of all gender and ages worldwide; consequently, several studies have performed great works to define factors causing it. This study develops an effective method to trace obesity levels based on supervised data mining techniques such as Random Forest and Multi-Layer Perception (MLP), so as to tackle this universal epidemic. Notably, the dataset was from countries like Mexico, Peru, and Colombia in the 14- 61year age group, with varying eating habits and physical conditions. The data includes 2111 instances and 17 attributes labelled using NObesity, which facilitates categorization of data using Overweight Levels l I and II, Insufficient Weight, Normal Weight, as well as Obesity Type I to III. This study found that the highest accuracy was achieved by Random Forest algorithm in comparison to the MLP algorithm, with an overall classification rate of 96.7%.

Using Data Mining Techniques in Building a Model to Determine the Factors Affecting Academic Data for Undergraduate Students

  • Nafie, Faisal Mohammed;Hamed, Abdelmoneim Ali Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.306-312
    • /
    • 2021
  • The main goal of higher education institutions is to present a high level of quality education to its students. This study uses data mining techniques to extract educational data from cumulative databases and used them to make the right decisions. This paper also aims to find the factors affecting students' academic performance in Majmaah University, KSA, during 2010 - 2017 period. The study utilized a sample of 6,158 students enrolled from two colleges, males and females. The results showed a high percentage of stumbling and dismissed between graduate and regular students where more than 62.5% failed to follow the plan. Only 2% of students scored distinction during their study of all graduated since their grade point average, secondary level, was statistically significant, where p<0.05. Dismissed percentage was higher among males. These results promoted some recommendations in which decision-makers could take them in considerations for better improvement of academic achievements: including of specialized programs to follow-up in regards to stumbling and failure. Utilization of different communication tools are needed to activate academic advisory for dismiss and dropout evaluation.

GT-PSO- An Approach For Energy Efficient Routing in WSN

  • Priyanka, R;Reddy, K. Satyanarayan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.17-26
    • /
    • 2022
  • Sensor Nodes play a major role to monitor and sense the variations in physical space in various real-time application scenarios. These nodes are powered by limited battery resources and replacing those resource is highly tedious task along with this it increases implementation cost. Thus, maintaining a good network lifespan is amongst the utmost important challenge in this field of WSN. Currently, energy efficient routing techniques are considered as promising solution to prolong the network lifespan where multi-hop communications are performed by identifying the most energy efficient path. However, the existing scheme suffer from performance related issues. To solve the issues of existing techniques, a novel hybrid technique by merging particle swarm optimization and game theory model is presented. The PSO helps to obtain the efficient number of cluster and Cluster Head selection whereas game theory aids in finding the best optimized path from source to destination by utilizing a path selection probability approach. This probability is obtained by using conditional probability to compute payoff for agents. When compared to current strategies, the experimental study demonstrates that the proposed GTPSO strategy outperforms them.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

OAPR-HOML'1: Optimal automated program repair approach based on hybrid improved grasshopper optimization and opposition learning based artificial neural network

  • MAMATHA, T.;RAMA SUBBA REDDY, B.;BINDU, C SHOBA
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.261-273
    • /
    • 2022
  • Over the last decade, the scientific community has been actively developing technologies for automated software bug fixes called Automated Program Repair (APR). Several APR techniques have recently been proposed to effectively address multiple classroom programming errors. However, little attention has been paid to the advances in effective APR techniques for software bugs that are widely occurring during the software life cycle maintenance phase. To further enhance the concept of software testing and debugging, we recommend an optimized automated software repair approach based on hybrid technology (OAPR-HOML'1). The first contribution of the proposed OAPR-HOML'1 technique is to introduce an improved grasshopper optimization (IGO) algorithm for fault location identification in the given test projects. Then, we illustrate an opposition learning based artificial neural network (OL-ANN) technique to select AST node-level transformation schemas to create the sketches which provide automated program repair for those faulty projects. Finally, the OAPR-HOML'1 is evaluated using Defects4J benchmark and the performance is compared with the modern technologies number of bugs fixed, accuracy, precession, recall and F-measure.

Study on Image Processing Techniques Applying Artificial Intelligence-based Gray Scale and RGB scale

  • Lee, Sang-Hyun;Kim, Hyun-Tae
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.252-259
    • /
    • 2022
  • Artificial intelligence is used in fusion with image processing techniques using cameras. Image processing technology is a technology that processes objects in an image received from a camera in real time, and is used in various fields such as security monitoring and medical image analysis. If such image processing reduces the accuracy of recognition, providing incorrect information to medical image analysis, security monitoring, etc. may cause serious problems. Therefore, this paper uses a mixture of YOLOv4-tiny model and image processing algorithm and uses the COCO dataset for learning. The image processing algorithm performs five image processing methods such as normalization, Gaussian distribution, Otsu algorithm, equalization, and gradient operation. For RGB images, three image processing methods are performed: equalization, Gaussian blur, and gamma correction proceed. Among the nine algorithms applied in this paper, the Equalization and Gaussian Blur model showed the highest object detection accuracy of 96%, and the gamma correction (RGB environment) model showed the highest object detection rate of 89% outdoors (daytime). The image binarization model showed the highest object detection rate at 89% outdoors (night).