• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.035 seconds

Improving Efficiency of Encrypted Data Deduplication with SGX (SGX를 활용한 암호화된 데이터 중복제거의 효율성 개선)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.8
    • /
    • pp.259-268
    • /
    • 2022
  • With prosperous usage of cloud services to improve management efficiency due to the explosive increase in data volume, various cryptographic techniques are being applied in order to preserve data privacy. In spite of the vast computing resources of cloud systems, decrease in storage efficiency caused by redundancy of data outsourced from multiple users acts as a factor that significantly reduces service efficiency. Among several approaches on privacy-preserving data deduplication over encrypted data, in this paper, the research results for improving efficiency of encrypted data deduplication using trusted execution environment (TEE) published in the recent USENIX ATC are analysed in terms of security and efficiency of the participating entities. We present a way to improve the stability of a key-managing server by integrating it with individual clients, resulting in secure deduplication without independent key servers. The experimental results show that the communication efficiency of the proposed approach can be improved by about 30% with the effect of a distributed key server while providing robust security guarantees as the same level of the previous research.

Formation of Research Competence Using Innovative Technologies to Improve the Quality of Training Future Specialists

  • Olena, Dobosh;Daria, Koval;Natalya, Paslavska;Natalia, Cherednichenko;Iryna, Bondar;Oksana, Vytrykhovska;Olena, Bida
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.91-97
    • /
    • 2022
  • Analyzing the psychological and pedagogical literature, we showed the interest of researchers in the problem posed. The concept of competence is considered, which is interpreted as giving the key to solving a wide range of educational and life tasks. Research competence implies the ability to cooperate, enter into contacts, readiness for changes, for self-determination and is an integral quality of the individual, expressed in the readiness and ability to independently search for solutions to new problems and creative transformation of reality based on a set of personal and meaningful knowledge, skills, methods of activity and value attitudes.The article offers conditions that certify the improvement of forms and methods of training students in the formation of research competence of future specialists. The use of innovative technologies contributes to improving the level of training of future specialists: students are better prepared for classes, take an active part in the assimilation of program material in laboratory classes. It is noted that this creates a subject-subject relationship between the student and the teacher, and changes the attitude of students to classes. In the process of such organization of educational activities, students are convinced of the need for knowledge and its effectiveness, learn to compare, generalize, classify, establish cause-and-effect relationships, express opinions, defend their point of view, they ensure success in their studies, and develop research competence. It is proved that in order to apply the latest technologies, the teacher himself must know them well, that is, constantly improve himself, master new methods, techniques, ideas, which will help him create new pedagogical technologies and implement them in the educational process.

Personalized Diabetes Risk Assessment Through Multifaceted Analysis (PD- RAMA): A Novel Machine Learning Approach to Early Detection and Management of Type 2 Diabetes

  • Gharbi Alshammari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.17-25
    • /
    • 2023
  • The alarming global prevalence of Type 2 Diabetes Mellitus (T2DM) has catalyzed an urgent need for robust, early diagnostic methodologies. This study unveils a pioneering approach to predicting T2DM, employing the Extreme Gradient Boosting (XGBoost) algorithm, renowned for its predictive accuracy and computational efficiency. The investigation harnesses a meticulously curated dataset of 4303 samples, extracted from a comprehensive Chinese research study, scrupulously aligned with the World Health Organization's indicators and standards. The dataset encapsulates a multifaceted spectrum of clinical, demographic, and lifestyle attributes. Through an intricate process of hyperparameter optimization, the XGBoost model exhibited an unparalleled best score, elucidating a distinctive combination of parameters such as a learning rate of 0.1, max depth of 3, 150 estimators, and specific colsample strategies. The model's validation accuracy of 0.957, coupled with a sensitivity of 0.9898 and specificity of 0.8897, underlines its robustness in classifying T2DM. A detailed analysis of the confusion matrix further substantiated the model's diagnostic prowess, with an F1-score of 0.9308, illustrating its balanced performance in true positive and negative classifications. The precision and recall metrics provided nuanced insights into the model's ability to minimize false predictions, thereby enhancing its clinical applicability. The research findings not only underline the remarkable efficacy of XGBoost in T2DM prediction but also contribute to the burgeoning field of machine learning applications in personalized healthcare. By elucidating a novel paradigm that accentuates the synergistic integration of multifaceted clinical parameters, this study fosters a promising avenue for precise early detection, risk stratification, and patient-centric intervention in diabetes care. The research serves as a beacon, inspiring further exploration and innovation in leveraging advanced analytical techniques for transformative impacts on predictive diagnostics and chronic disease management.

Comparative Analysis of Machine Learning Techniques for IoT Anomaly Detection Using the NSL-KDD Dataset

  • Zaryn, Good;Waleed, Farag;Xin-Wen, Wu;Soundararajan, Ezekiel;Maria, Balega;Franklin, May;Alicia, Deak
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.46-52
    • /
    • 2023
  • With billions of IoT (Internet of Things) devices populating various emerging applications across the world, detecting anomalies on these devices has become incredibly important. Advanced Intrusion Detection Systems (IDS) are trained to detect abnormal network traffic, and Machine Learning (ML) algorithms are used to create detection models. In this paper, the NSL-KDD dataset was adopted to comparatively study the performance and efficiency of IoT anomaly detection models. The dataset was developed for various research purposes and is especially useful for anomaly detection. This data was used with typical machine learning algorithms including eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Deep Convolutional Neural Networks (DCNN) to identify and classify any anomalies present within the IoT applications. Our research results show that the XGBoost algorithm outperformed both the SVM and DCNN algorithms achieving the highest accuracy. In our research, each algorithm was assessed based on accuracy, precision, recall, and F1 score. Furthermore, we obtained interesting results on the execution time taken for each algorithm when running the anomaly detection. Precisely, the XGBoost algorithm was 425.53% faster when compared to the SVM algorithm and 2,075.49% faster than the DCNN algorithm. According to our experimental testing, XGBoost is the most accurate and efficient method.

Optimized Implementation of Lightweight Block Cipher SIMECK and SIMON Counter Operation Mode on 32-Bit RISC-V Processors (32-bit RISC-V 프로세서 상에서의 경량 블록 암호 SIMECK, SIMON 카운터 운용 모드 최적 구현)

  • Min-Joo Sim;Hyeok-Dong Kwon;Yu-Jin Oh;Min-Ho Song;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.165-173
    • /
    • 2023
  • In this paper, we propose an optimal implementation of lightweight block ciphers, SIMECK and SIMON counter operation mode, on a 32-bit RISC-V processor. Utilizing the characteristics of the CTR operating mode, we propose round function optimization that precomputes some values, single plaintext optimization and two plaintext parallel optimization. Since there are no previous research results on SIMECK and SIMON on RISC-V, we compared the performance of implementations with and without precomputation techniques for single plaintext optimization and two plaintext parallel optimization implementations. As a result, the implementations to which the precomputation technique was applied showed a performance improvement of 1% compared to the implementations to which precomputation was not applied.

Deep Learning-Based Neural Distinguisher for PIPO 64/128 (PIPO 64/128에 대한 딥러닝 기반의 신경망 구별자)

  • Hyun-Ji Kim;Kyung-Bae Jang;Se-jin Lim;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2023
  • Differential cryptanalysis is one of the analysis techniques for block ciphers, and uses the property that the output difference with respect to the input difference exists with a high probability. If random data and differential data can be distinguished, data complexity for differential cryptanalysis can be reduced. For this, many studies on deep learning-based neural distinguisher have been conducted. In this paper, a deep learning-based neural distinguisher for PIPO 64/128 is proposed. As a result of experiments with various input differences, the 3-round neural distinguisher for the differential characteristics for 0, 1, 3, and 5-rounds achieved accuracies of 0.71, 0.64, 0.62, and 0.64, respectively. This work allows distinguishing attacks for up to 8 rounds when used with the classical distinguisher. Therefore, scalability was achieved by finding a distinguisher that could handle the differential of each round. To improve performance, we plan to apply various neural network structures to construct an optimal neural network, and implement a neural distinguisher that can use related key differential or process multiple input differences simultaneously.

A Novel RGB Channel Assimilation for Hyperspectral Image Classification using 3D-Convolutional Neural Network with Bi-Long Short-Term Memory

  • M. Preethi;C. Velayutham;S. Arumugaperumal
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2023
  • Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.

A Study on Essential Concepts, Tools, Techniques and Methods of Stock Market Trading: A Guide to Traders and Investors (주식 거래의 필수 개념, 도구, 기법 및 방법에 관한 연구: 거래자와 투자자를 위한 안내서)

  • Sukhendu Mohan Patnaik;Debahuti Mishra
    • Advanced Industrial SCIence
    • /
    • v.2 no.1
    • /
    • pp.21-38
    • /
    • 2023
  • An attempt has been made in this article to discuss the fundamentals of technical analysis of the stock market. A retail investor or trader may not have the wherewithal to source that kind of information. Technical analysis requires a candlestick chart only. Most of the brokers in India provide charting solutions as well. Studying the price action of a security or commodity or Forex generally indicates a price pattern. Prices react at certain levels and widely known as support and resistance levels. Since whatever is happening with the price of the security is considered to be a part of a pattern or cycle which has already played out sometime in the past, these studies help a keen technical analyst to identify with certain probability, the future movement of the price. Study of the candlestick patterns, price action, volumes and indicators offer the opportunities to identify a high probability trade with probable target and a stop loss. A trader or investor can take high probability trade or position and control only her losses.

Intelligent System for the Prediction of Heart Diseases Using Machine Learning Algorithms with Anew Mixed Feature Creation (MFC) technique

  • Rawia Elarabi;Abdelrahman Elsharif Karrar;Murtada El-mukashfi El-taher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.148-162
    • /
    • 2023
  • Classification systems can significantly assist the medical sector by allowing for the precise and quick diagnosis of diseases. As a result, both doctors and patients will save time. A possible way for identifying risk variables is to use machine learning algorithms. Non-surgical technologies, such as machine learning, are trustworthy and effective in categorizing healthy and heart-disease patients, and they save time and effort. The goal of this study is to create a medical intelligent decision support system based on machine learning for the diagnosis of heart disease. We have used a mixed feature creation (MFC) technique to generate new features from the UCI Cleveland Cardiology dataset. We select the most suitable features by using Least Absolute Shrinkage and Selection Operator (LASSO), Recursive Feature Elimination with Random Forest feature selection (RFE-RF) and the best features of both LASSO RFE-RF (BLR) techniques. Cross-validated and grid-search methods are used to optimize the parameters of the estimator used in applying these algorithms. and classifier performance assessment metrics including classification accuracy, specificity, sensitivity, precision, and F1-Score, of each classification model, along with execution time and RMSE the results are presented independently for comparison. Our proposed work finds the best potential outcome across all available prediction models and improves the system's performance, allowing physicians to diagnose heart patients more accurately.

Deep Learning based Dynamic Taint Detection Technique for Binary Code Vulnerability Detection (바이너리 코드 취약점 탐지를 위한 딥러닝 기반 동적 오염 탐지 기술)

  • Kwang-Man Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2023
  • In recent years, new and variant hacking of binary codes has increased, and the limitations of techniques for detecting malicious codes in source programs and defending against attacks are often exposed. Advanced software security vulnerability detection technology using machine learning and deep learning technology for binary code and defense and response capabilities against attacks are required. In this paper, we propose a malware clustering method that groups malware based on the characteristics of the taint information after entering dynamic taint information by tracing the execution path of binary code. Malware vulnerability detection was applied to a three-layered Few-shot learning model, and F1-scores were calculated for each layer's CPU and GPU. We obtained 97~98% performance in the learning process and 80~81% detection performance in the test process.