• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.024 seconds

Prediction of Student's Interest on Sports for Classification using Bi-Directional Long Short Term Memory Model

  • Ahamed, A. Basheer;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.246-256
    • /
    • 2022
  • Recently, parents and teachers consider physical education as a minor subject for students in elementary and secondary schools. Physical education performance has become increasingly significant as parents and schools pay more attention to physical schooling. The sports mining with distribution analysis model considers different factors, including the games, comments, conversations, and connection made on numerous sports interests. Using different machine learning/deep learning approach, children's athletic and academic interests can be tracked over the course of their academic lives. There have been a number of studies that have focused on predicting the success of students in higher education. Sports interest prediction research at the secondary level is uncommon, but the secondary level is often used as a benchmark to describe students' educational development at higher levels. An Automated Student Interest Prediction on Sports Mining using DL Based Bi-directional Long Short-Term Memory model (BiLSTM) is presented in this article. Pre-processing of data, interest classification, and parameter tweaking are all the essential operations of the proposed model. Initially, data augmentation is used to expand the dataset's size. Secondly, a BiLSTM model is used to predict and classify user interests. Adagrad optimizer is employed for hyperparameter optimization. In order to test the model's performance, a dataset is used and the results are analysed using precision, recall, accuracy and F-measure. The proposed model achieved 95% accuracy on 400th instances, where the existing techniques achieved 93.20% accuracy for the same. The proposed model achieved 95% of accuracy and precision for 60%-40% data, where the existing models achieved 93% for accuracy and precision.

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

Proposal of Hostile Command Attack Method Using Audible Frequency Band for Smart Speaker (스마트 스피커 대상 가청 주파수 대역을 활용한 적대적 명령어 공격 방법 제안)

  • Park, Tae-jun;Moon, Jongsub
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • Recently, the functions of smart speakers have diversified, and the penetration rate of smart speakers is increasing. As it becomes more widespread, various techniques have been proposed to cause anomalous behavior against smart speakers. Dolphin Attack, which causes anomalous behavior against the Voice Controllable System (VCS) during various attacks, is a representative method. With this method, a third party controls VCS using ultrasonic band (f>20kHz) without the user's recognition. However, since the method uses the ultrasonic band, it is necessary to install an ultrasonic speaker or an ultrasonic dedicated device which is capable of outputting an ultrasonic signal. In this paper, a smart speaker is controlled by generating an audio signal modulated at a frequency (18 to 20) which is difficult for a person to hear although it is in the human audible frequency band without installing an additional device, that is, an ultrasonic device. As a result with the method proposed in this paper, while humans could not recognize voice commands even in the audible band, it was possible to control the smart speaker with a probability of 82 to 96%.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

Analysis of Malware Group Classification with eXplainable Artificial Intelligence (XAI기반 악성코드 그룹분류 결과 해석 연구)

  • Kim, Do-yeon;Jeong, Ah-yeon;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.559-571
    • /
    • 2021
  • Along with the increase prevalence of computers, the number of malware distributions by attackers to ordinary users has also increased. Research to detect malware continues to this day, and in recent years, research on malware detection and analysis using AI is focused. However, the AI algorithm has a disadvantage that it cannot explain why it detects and classifies malware. XAI techniques have emerged to overcome these limitations of AI and make it practical. With XAI, it is possible to provide a basis for judgment on the final outcome of the AI. In this paper, we conducted malware group classification using XGBoost and Random Forest, and interpreted the results through SHAP. Both classification models showed a high classification accuracy of about 99%, and when comparing the top 20 API features derived through XAI with the main APIs of malware, it was possible to interpret and understand more than a certain level. In the future, based on this, a direct AI reliability improvement study will be conducted.

Deobfuscation Processing and Deep Learning-Based Detection Method for PowerShell-Based Malware (파워쉘 기반 악성코드에 대한 역난독화 처리와 딥러닝 기반 탐지 방법)

  • Jung, Ho-jin;Ryu, Hyo-gon;Jo, Kyu-whan;Lee, Sangkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.501-511
    • /
    • 2022
  • In 2021, ransomware attacks became popular, and the number is rapidly increasing every year. Since PowerShell is used as the primary ransomware technique, the need for PowerShell-based malware detection is ever increasing. However, the existing detection techniques have limits in that they cannot detect obfuscated scripts or require a long processing time for deobfuscation. This paper proposes a simple and fast deobfuscation method and a deep learning-based classification model that can detect PowerShell-based malware. Our technique is composed of Word2Vec and a convolutional neural network to learn the meaning of a script extracting important features. We tested the proposed model using 1400 malicious codes and 8600 normal scripts provided by the AI-based PowerShell malicious script detection track of the 2021 Cybersecurity AI/Big Data Utilization Contest. Our method achieved 5.04 times faster deobfuscation than the existing methods with a perfect success rate and high detection performance with FPR of 0.01 and TPR of 0.965.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

Utility Analysis of Federated Learning Techniques through Comparison of Financial Data Performance (금융데이터의 성능 비교를 통한 연합학습 기법의 효용성 분석)

  • Jang, Jinhyeok;An, Yoonsoo;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.405-416
    • /
    • 2022
  • Current AI technology is improving the quality of life by using machine learning based on data. When using machine learning, transmitting distributed data and collecting it in one place goes through a de-identification process because there is a risk of privacy infringement. De-identification data causes information damage and omission, which degrades the performance of the machine learning process and complicates the preprocessing process. Accordingly, Google announced joint learning in 2016, a method of de-identifying data and learning without the process of collecting data into one server. This paper analyzed the effectiveness by comparing the difference between the learning performance of data that went through the de-identification process of K anonymity and differential privacy reproduction data using actual financial data. As a result of the experiment, the accuracy of original data learning was 79% for k=2, 76% for k=5, 52% for k=7, 50% for 𝜖=1, and 82% for 𝜖=0.1, and 86% for Federated learning.

High Noise Density Median Filter Method for Denoising Cancer Images Using Image Processing Techniques

  • Priyadharsini.M, Suriya;Sathiaseelan, J.G.R
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.308-318
    • /
    • 2022
  • Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.

Intellectualization of Higher Education: An Information and Communication Model

  • Kaidanovska, Olena;Pymonenko, Mariia;Morklyanyk, Oksana;Iurchyshyn, Oksana;Rakochyi, Yaroslav
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.87-92
    • /
    • 2022
  • Today the system of higher education needs significant reforms. Intellectualization of the educational process in HEIs aims to improve the quality of educational services. Intellectual information technologies are information technologies that help a person to accelerate the analysis of the political, economic, social, and technical situation, as well as the synthesis of management decisions. The basis for their mastery is information and communication technologies. The purpose of the research work is to identify the relationship between the introduction of information and communication technologies and the increase in the level of intellectualization of higher education. The article substantiates the expediency of introducing information and communication technologies in order to improve the intellectualization of the educational process in higher education. An empirical study of the variables that characterize the level of intellectualization of higher education through the proposed techniques has been conducted. The tendencies characteristic of pedagogical conditions of implementation of information and communication model in the educational process were revealed. It is proved that the level of intellectualization of higher education depends on the implemented pedagogical conditions. The effectiveness of the proposed information and communication model is also confirmed. Given the data obtained during the study and the low constraints that may affect the results of further research on this issue should focus on the study of other variables that characterize the state of intellectualization of the educational process.