• Title/Summary/Keyword: Sectional steel

Search Result 394, Processing Time 0.027 seconds

Axial compressed UHPC plate-concrete filled steel tubular composite short columns, Part I: Bearing capacity

  • Jiangang Wei;Zhitao Xie;Wei Zhang;Yan Yang;Xia Luo;Baochun Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.405-421
    • /
    • 2023
  • An experimental study on six axially-loaded composite short columns with different thicknesses of steel tube and that of the concrete plate was carried out. Compared to the mechanical behavior of component specimens under axially compressed, the failure modes, compression deformation, and strain process were obtained. The two main parameters that have a significant enhancement to cross-sectional strength were also analyzed. The failure of an axially loaded UHPC-CFST short column is due to the crushing of the UHPC plate, while the CFST member does reach its maximum resistance. A reduction coefficient K'c, related to the confinement coefficient, is introduced to account for the contribution of CFST members to the ultimate load-carrying capacity of the UHPC-CFST composite short columns. Based on the regression analysis of the relationship between the confinement index ξ and the value of fcc/fc, a unified formula for estimating the axial compressive strength of CFST short columns was proposed, combined with the experimental results in this research, and an equation for reliably predicting the strength of UHPC-CFST composite short columns under axial compression were also proposed.

An enhanced simulated annealing algorithm for topology optimization of steel double-layer grid structures

  • Mostafa Mashayekhi;Hamzeh Ghasemi
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.115-136
    • /
    • 2024
  • Stochastic optimization methods have been extensively studied for structural optimization in recent decades. In this study, a novel algorithm named the CA-SA method, is proposed for topology optimization of steel double-layer grid structures. The CA-SA method is a hybridized algorithm combining the Simulated Annealing (SA) algorithm and the Cellular Automata (CA) method. In the CA-SA method, during the initial iterations of the SA algorithm, some of the preliminary designs obtained by SA are placed in the cells of the CA. In each successive iteration, a cell is randomly chosen from the CA. Then, the "local leader" (LL) is determined by selecting the best design from the chosen cell and its neighboring ones. This LL then serves as the leader for modifying the SA algorithm. To evaluate the performance of the proposed CA-SA algorithm, two square-on-square steel double-layer grid structures are considered, with discrete cross-sectional areas. These numerical examples demonstrate the superiority of the CA-SA method over SA, and other meta-heuristic algorithms reported in the literature in the topology optimization of large-scale skeletal structures.

Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT (개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계)

  • Yun, Young Mook;Kang, Moon Myoung;Lee, Mal Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.21-32
    • /
    • 2004
  • In this study, a continuous optimum design model with its application program for plane steel frame structures developed. In the model, the sequential unconstrained minimization technique (SUMT) transforming the nonlinear optimization problem with multidesign variables and constraints into an unconstrained minimization problem and the refined plastic hinge analysis method as one of the most effective second-order inelastic analysis methods for steel frame structures were implemented. The total weight of a steel frame structure was taken as the objective function, and the AISC-LRFD code requirements for the local and member buckling, flexural strength, shear strength, axial strength and size of the cross-sectional shapes of members were used for the derivation of constraint equations. To verify the appropriateness of the present model, the optimum designs of serveral plane steel frame structures subject to vertical and horizontal loads were conducted.

Load-carrying Capacity of Thermal Prestressed Steel Beam with Eccentric Bracket (편심 브라켓 설치 온도프리스트레싱 강재보의 하중저항 성능)

  • Kim, Sang-Hyo;Jung, Chi-Young;Choi, Kyu-Tae;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • This study evaluates the load-carrying capacity of a thermal prestressed steel beam with an eccentric bracket. The steel beam that is proposed in this study has an eccentrically installed cover plate through application of the eccentric bracket. The eccentric bracket helps the steel beam achieve greater sectional stiffness and more efficiently induces prestress. A material non-linear characteristic applied finite element analysis was also conducted to check the validity of the experiments. The results of this study showed that the structural stiffness, yield load, and ultimate strength of the TPSM-applied steel beam with the eccentric bracket increased due to the eccentricity of the cover plate.

Evaluation of Compressive Strengths of Tubular Steel Members According to Corrosion Damage and Shape (원형 강관의 국부 부식손상 수준 및 손상형태에 따른 압축강도 성능평가)

  • Ahn, Jin Hee;Nam, Dong Kyun;Lee, Won Hong;Huh, Jungwon;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.213-222
    • /
    • 2016
  • For a steel structure with long service period, structural performance can be changed or decreased by corrosion damage occurred under severe corrosion environment condition. In this study, to examine compressive strength and behavior of circular steel member depending on corrosion damage, compressive loading tests were conducted using circular steel member with artificial corrosion damage which was applied by mechanical process and hand drill. From test results, local corrosion area and pattern is related to their structural performance. Their lcoal bucklings were occurred near artificially sectional damaged part. Reduction in compressive strength of circular steel member was also suggested according to their corroded part and damage.

Numerical Investigation on the Behavior of Braced Excavation Supported by Steel Pipe Struts (강관버팀보 흙막이 시스템의 거동 특성에 관한 수치해석적 연구)

  • Yoo, Chung-Sik;Na, Seung-Min;Lee, Jong-Goo;Jang, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.45-56
    • /
    • 2010
  • This paper presents the results of a numerical investigation on the behavior of deep excavation wall system supported by steel pipe struts. A series of three-dimensional finite element analyses were carried out on a braced excavation case which adopted steel pipe struts. The results indicated that the mechanical behavior of the steel pipe supported braced excavation is comparable to that of a conventional H-pile supported excavation, although the steel pipe supported system allows a larger longitudinal spacing than the conventional H-pile strut system. Also shown is that the sectional stresses of the steel pipe support system are within the allowable values. This implies that the steel pipe support system can be effectively used as an alternative to conventional H-pile support system.

Performance assessment of buckling restrained brace with tubular profile

  • Cao, Yan;Azar, Sadaf Mahmoudi;Shah, S.N.R.;Salih, Ahmed Fathi Mohamed;Thiagi, Tiana;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.323-333
    • /
    • 2020
  • In recent years, there has been an upsurge for the usage of buckling restrained braces (BRB) rather than ordinary braces, as they have evidently performed better. If the overall brace buckling is ignored, BRBs are proven to have higher energy absorption capacity and flexibility. This article aims to deliberate an economically efficient yet adequate type of all-steel BRB, comprised of the main components as in traditional ones, such as : (1) a steel core that holds all axial forces and (2) a steel restrainer tube that hinders buckling to occurr in the core; there is a more practical detailing in the BRB system due to the elimination of a filling mortar. An investigation has been conducted for the proposed rectangular-tube core BRB and it is hysteric behavioral results have been compared to previous researches conducted on a structure containing a similar plate core profile that has the same cross-sectional area in its core. A loss of strength is known to occur in the BRB when the limiting condition of local buckling is not satisfied, thus causing instability. This typically occurs when the thickness of the restrainer tube's wall is smaller than the cross-sectional area of the core plate or its width. In this study, a parametric investigation for BRBs with different formations has been performed to verify the effect of the design parameters such as different core section profiles, restraining member width to thickness ratio and relative cross-sectional area of the core to restrainer, on buckling load evaluation. The proposed BRB investigation results have also been presented and compared to past BRB researches with a plate profile as the core section, and the advantages and disadvantages of this configuration have been discussed, and it is concluded that BRBs with tubular core section exhibit a better seismic performance than the ones with a plate core profile.

Optimum Design of Two Hinged Steel Arches with I Sectional Type (SUMT법(法)에 의(依)한 2골절(滑節) I형(形) 강재(鋼材) 아치의 최적설계(最適設計))

  • Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.65-79
    • /
    • 1992
  • This study is concerned with the optimal design of two hinged steel arches with I cross sectional type and aimed at the exact analysis of the arches and the safe and economic design of structure. The analyzing method of arches which introduces the finite difference method considering the displacements of structure in analyzing process is used to eliminate the error of analysis and to determine the sectional force of structure. The optimizing problems of arches formulate with the objective functions and the constraints which take the sectional dimensions(B, D, $t_f$, $t_w$) as the design variables. The object functions are formulated as the total weight of arch and the constraints are derived by using the criteria with respect to the working stress, the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge and including the economic depth constraint of the I sectional type, the upper limit dimension of the depth of web and the lower limit dimension of the breadth of flange. The SUMT method using the modified Newton Raphson direction method is introduced to solve the formulated nonlinear programming problems which developed in this study and tested out throught the numerical examples. The developed optimal design programming of arch is tested out and examined throught the numerical examples for the various arches. And their results are compared and analyzed to examine the possibility of optimization, the applicablity, the convergency of this algorithm and with the results of numerical examples using the reference(30). The correlative equations between the optimal sectional areas and inertia moments are introduced from the various numerical optimal design results in this study.

  • PDF

Interface Behavior of Concrete Infilled Steel Tube Subjected to Flexure (휨을 받는 콘크리트 충전 강관의 계면거동)

  • Lee, Ta;Jeong, Jong-Hyun;Kim, Hyeng-Ju;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • Interface behavior of concrete-infilled steel tube (CFT) was investigated based on the experimental observations and numerical analyses. Laboratory tests were performed for twelve CFTs that consisted of two different cases of diameters where each diameter case was composed of three different cases of shear span length. Thereby, diameter and shear span parameters were considered to prove the question of whether there exists interface slip between steel tube and infilled-concrete. Confining effect of steel tube to infilled concrete was also investigated by measuring lateral strain as well as longitudinal strain. Based on the study, it was concluded that confining effect of steel tube to infilled-concrete is not influential under flexural loading and therefore, the sectional analysis is an effective way to estimate the flexural strength of CFT.

A Study on the Load Carrying Capacity and Deformation Capacity of the Internal Anchors Welded Cold Formed Concrete Filled Columns (내부앵커형 콘크리트 충전 기둥의 내력 및 변형능력에 관한 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.347-357
    • /
    • 2013
  • Recently, In recognition of outstanding structural performance the use of Concrete Filled steel Tube(CFT) columns has been increased. Research is ongoing that effective use of cross-sectional because steel strength development and rising prices. In this Lab, suggests new shape by Thin steel plates bent to be L-channel welded to form square steel tube to maximize efficiency of the cross section. In addition, since the rib placed at the center of the tube width acts as an anchor; higher load capacity of buckling is acceptable. we have developed New shape welded built-up square tube for broader usability which were bent to be L-shaped and thin Plate each unit member were welded. In order to apply the new shape built-up square columns, we predicted structure behavior, stress distribution with parameter Width thickness ratio. The experimental results presented in standards and even exceed the b/t of the rib anchors installed in the role due to exert enough strength and deformation to improve performance was favorable.