• Title/Summary/Keyword: Sectional model

Search Result 1,215, Processing Time 0.024 seconds

A Study on the Effect of Inclusions on the Fatigue Life of Titanium Investment Castings (티타늄 정밀주조품의 피로수명에 미치는 개재물의 영향에 관한 연구)

  • Park, Yong-Kuk;Ret, P.L.;Kim, Jin-Gon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Inclusions in Ti investment castings are generally known to have detrimental effects on the performance of the castings. However, actual inclusions are infrequent and hard to be located. As a result, it is extremely difficult to obtain sufficient amount of fatigue test specimens of titanium investment castings having inclusions in the gage section. Thus, in-depth research of the adverse influence of inclusions is also hindered. To address this problem, a new casting methodology of specimens containing hard alpha inclusions was developed in this study. To guarantee successful introduction of an inclusion and casting, a carefully designed mold with 8 legs and a special tool were employed. After solidification, castings were cut, and X-ray radiography determined that the inclusions were successfully incorporated into the castings. The castings were further prepared to obtain multiple test specimens and they were fatigue-tested consecutively. Fractography analysis confirmed that fatigue cracks initiated at the hard alpha inclusion. In a nonlinear regression model, the fatigue life can be modeled as an exponential function with a negative exponent of the cross-sectional area of an inclusion. The fatigue life of Ti specimens containing inclusions is inversely proportional to the cross-sectional area of an inclusion.

Modeling 3D Cadaster for DBMS : focusing on Sectional Superficies (DBMS를 위한 3차원 지적 모델링 : 구분지상권을 중심으로)

  • Jun, Chul Min
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.73-83
    • /
    • 2013
  • 3D cadaster problems are getting attention and studied increasingly. However, correct concepts have not been established for three dimensional land uses and different rights problems around them. This is primarily due to the lack of proper methods for implementation and operation of 3D cadaster. 3D cadaster requiring far more huge data than 2D should be built in DBMS and need appropriate methods and processes for this. This study propose a method to model 3D cadaster using DBMS. First, it analyse and visualize possible problems around divided superficies in 3D spaces. Based on this, it illustrates UML models and shows an O-R mapping process to implement them using a RDBMS.

Numerical study of concrete-encased CFST under preload followed by sustained service load

  • Li, Gen;Hou, Chao;Han, Lin-Hai;Shen, Luming
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.93-109
    • /
    • 2020
  • Developed from conventional concrete filled steel tubular (CFST) members, concrete-encased CFST has attracted growing attention in building and bridge practices. In actual construction, the inner CFST is erected prior to the casting of the outer reinforced concrete part to support the construction preload, after which the whole composite member is under sustained service load. The complex loading sequence leads to highly nonlinear material interaction and consequently complicated structural performance. This paper studies the full-range behaviour of concrete-encased CFST columns with initial preload on inner CFST followed by sustained service load over the whole composite section. Validated against the reported data obtained from specifically designed tests, a finite element analysis model is developed to investigate the detailed structural behaviour in terms of ultimate strength, load distribution, material interaction and strain development. Parametric analysis is then carried out to evaluate the impact of significant factors on the structural behaviour of the composite columns. Finally, a simplified design method for estimating the sectional capacity of concrete-encased CFST is proposed, with the combined influences of construction preload and sustained service load being taken into account. The feasibility of the developed method is validated against both the test data and the simulation results.

Prediction of Differential Column Shortening for Reinforced Concrete Tall Buildings (시공단계를 고려한 철근콘크리트 고층건물 기둥의 부등축소량 해석)

  • Lee, Tae-Gyu;Kim, Jin-Keun;Song, Jin-Gyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.99-107
    • /
    • 1999
  • In this paper, the prediction method of the differential column shortening for cracked reinforced concrete tall buildings due to the construction sequence is presented. The cracked sectional properties from the strain and curvature of the sectional centroid is directly used. And the stiffness matrix of concrete elements considering the axial strain-curvature interaction effect is adopted. The creep and shrinkage properties used in the predictions were calculated in accordance with ACI 209, CEB-FIP 1990, and B3 model code. In order to demonstrate the validity of this algorithm, the prediction by the proposed method are compared with both the results of the in-situ test and the results by other simplified method. The proposed method is in good agreement with experimental results, and better than the simplified method.

A Study on Optimum design of Corrugated web girder using Eurocode (유로코드를 이용한 주름웨브보의 최적설계 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • This paper describes the structural design and optimization of sinusoidally corrugated web girder by using EUROCODE (EN 1993-1-5). The optimum design methodology and characteristics of the optimal cross-section are discussed. We investigate a shear buckling and the concerned standards for corrugated web and explain the equations to obtain a critical stress according to buckling type. In order to perform optimization, we consider an objective function as minimum weight of the girder and use the constraint functions as slenderness ratio and stresses of flanges as well as corrugated web and deflection. Genetic Algorithm is adopted to search a global optimum solution for this mathematical model. For numerical example, the clamped girder under the concentrated load is considered, while the optimum cross-sectional area and design variables are analyzed. From the results of the adopted example, the optimum design program of the sinusoidally corrugated web girder is able to find the suitable solution which satisfied a condition subject to constraint functions. The optimum design shows the tendency to decrease the cross-sectional area with the yielding strength increase and increase the areas with load increase. Moreover, the corrugated web thickness shows a stable increase concerning the load.

A numerical analysis on the performance of buckling restrained braces at fire-study of the gap filler effect

  • Talebi, Elnaz;Tahir, Mahmood Md.;Zahmatkesh, Farshad;Kueh, Ahmad B.H.
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.661-678
    • /
    • 2015
  • Buckling Restrained Braces (BRB) have been widely used in the construction industry as they utilize the most desirable properties of both constituent materials, i.e., steel and concrete. They present excellent structural qualities such as high load bearing capacity, ductility, energy-absorption capability and good structural fire behaviour. The effects of size and type of filler material in the existed gap at the steel core-concrete interface as well as the element's cross sectional shape, on BRB's fire resistance capacity was investigated in this paper. A nonlinear sequentially-coupled thermal-stress three-dimensional model was presented and validated by experimental results. Variation of the samples was described by three groups containing, the steel cores with the same cross section areas and equal yield strength but different materials (metal and concrete) and sizes for the gap. Responses in terms of temperature distribution, critical temperature, heating elapsed time and contraction level of BRB element were examined. The study showed that the superior fire performance of BRB was obtained by altering the filler material in the gap from metal to concrete as well as by increasing the size of the gap. Also, cylindrical BRB performed better under fire conditions compared to the rectangular cross section.

A Study on the Mechanical Mechanism According to the Groove Shape of T-welded Joint (T-joint 용접부의 형상에 따른 역학적 메카니즘에 관한 연구)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.53-61
    • /
    • 1999
  • The use of thick plate in increasing in recent years due to the rapid expansion of chemical plants, nuclear plants, ships and other industrial plants. Welding is the most popular joining techniques employed in manufacturing industrial machineries and structures. Normally, Groove shapes are prepared according to appropriate rules and regulations such as KS, JIS, AWS, LR, DNV and etc. for various thicknesses of plate. However those groove angles tend to be too large. As a result of large groove angle, residual stress, deformation of material and strength reduction is obtained. Therefore, the reliability and safety of structures and machinery tend to be decreasing. Therefore, in this paper, theoretical as well as experimental study are carried out to find optimum groove shapes for T-welded joint of mild steel. The test specimen are made in same condition with simulation model. Welding residual stresses measurement by sectional cutting method. ⅰ) The mechanical difference for change the thickness of plate and groove angle are not appeared. ⅱ) In a mechanical point of view minimum preparation angle(40°) is more suitable than maximum groove angle(60℃). ⅲ) The measurement value and distribution of welding residual stresses are not effected largely by groove angle. It is mechanical restraint that mainly affect welding residual stresses distribution. In mechanical point of view minimum groove angle is more suitable than maximum groove angle. Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.

A STUDY ON INITIAL CHANGES DURING CANINE RETRACTION BY THE FINITE ELEMENT METHOD (견치 원심이동시의 초기변화에 관한 유한요소법적 연구)

  • Kim, Young-Won;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.18 no.1 s.25
    • /
    • pp.25-53
    • /
    • 1988
  • Retraction of canines represents a fundamental stage in a considerable number of orthodontic treatment. Correct position of the canine after retraction is most important for function, stability, and esthetics. The purpose of this study was to investigate the stress in the periodontal tissue at the initial phase during canine retraction using various types of sectional retraction springs, by finite element method. Three dimensional model of tooth, periodontal ligament, bone and eight springs were simulated and tested. The following results were obtained. 1. In sectional retraction springs, increasing number of helix and the closed loop in preference to the open loop provided an decrease in horizontal force. Without angulating the arms of spring, the T-loop revealed the highest Moment-to-force ratio. 2. The Moment-to-force ratio raised by angulating mesial and distal arms of spring, but very large horizontal force was applied to canine. 3. When optimal force and optimal moment was applied to canine, the stress induced was homogeneous and the difference of stress value from cervix to the apex was little.

  • PDF

Hydrodynamic Characteristics in a Hexagonal Inverse Fluidized Bed (장방형 역유동층의 동력학적 특성)

  • 박영식;안갑환
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.93-102
    • /
    • 1996
  • Hydrodynamic characteristics such as gas holdup, liquid circulation velocity and bed expansion in a hexagonal inverse fluidized bed were investigated using air-water system by changing the ratio ($A_d$/$A_r$) of cross-sectional area between the riser and the downcomer, the liquid level($H_1$/H), and the superficial gas velocity($U_g$). The gas holdup and the liquid circulation velocity were steadily increased with the superficial gas velocity increasing, but at high superficial gas velocity, some of gas bubbles were carried over to a downcomer and circulated through the column. When the superficial gas velocity was high, the $A_d$/$A_r$ ratio in the range of 1 to 2.4 did not affect the liquid circulation velocity, but the maximum bed expansion was obtained at $A_d$/$A_r$ ratio of 1.25. The liquid circulation velocity was expressed as a model equation below with variables of the cross-sectional area ratio($A_d$/$A_r$) between riser to downcomer, the liquid level($H_1$/H), the superficial gas velocity($U_g$), the sparser height[(H-$H_s$)/H], and the draft Plate level($H_b$/H). $U_{ld}$ = 11.62U_g^{0.75}$${(\frac{H_1}{H})}^{10.30}$${(\frac{A_d}{A_r})}^{-0.52}$${(\frac({H-H_s}{H})}^{0.91}$${(\frac{H_b}{H})}^{0.13}$

  • PDF