• Title/Summary/Keyword: Sectional Area Curve

Search Result 68, Processing Time 0.019 seconds

On the Volumetric Balanced Variation of Ship Forms (체적 밸런스 선형변환방법에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.

Variation of the Hull Form using SAC and NURBS Curve (횡단면적 곡선과 NURBS곡선을 이용한 선형 변환)

  • Kim, Hyun-Cheol;Kim, Soo-Young;Ahn, Dang;Ha, Mun-Keun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.29-36
    • /
    • 1995
  • This paper presents a variation method of the parent ship using sectional area curve & the definition of NURBS curve. That is, global variation of the hull form is made systematically by the geometrical property of sectional area curve, and Local variation of the hull form is executed by the definition of NURBS curve. Then the designer may determine New hull form considering New section area curve, design condition, etc.

  • PDF

Generation of Sectional Area Curve using an ANFIS and a B-spline Curve (적응형 회로망의 퍼지 추론과 B-spline 곡선을 이용한 횡단면적 곡선의 생성)

  • Kim, Soo-Young;Kim, Hyun-Cheol;Ryeu, Kyung-Hyun;Kim, Min-Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.96-102
    • /
    • 1998
  • This paper presents to create a SAC(Sectional Area Curve) using an ANFIS(Adaptive-Network-based Fuzzy Inference System). First, it defines SACs of parent ships by using a B-spline approximation and a genetic algorithm and accumulates a database about SAC's control points. Second, it learns an ANFIS from parent ship data, which are related with principal dimensions and SAC's control points. This process is to model an ANFIS for SAC inferreice. When an ANFIS modeling is completed, we can determine a SAC through an ANFIS inferring.

  • PDF

Hull Form Definition of Underwater Vehicle using NURBS Curve (NURBS곡선을 이용한 수중운동체의 선형정의)

  • Hyun-Cheol Kim;Seon-Sik Pyo;Soo-Young Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • This paper suggests a numerical method that creates and varies hull form geometry of underwater vehicle. That is, it induces the cylindrical underwater vehicle from principal dimensions-total length, the length of parallel middle body, the coefficient defining entrance & run parts etc.-and represents using NURBS curve. Also, each section of hull form is varied by user interface and Sectional Area Curve is generated.

  • PDF

Parametric Design of Complex Hull Forms

  • Kim Hyun-Cheol;Nowacki Horst
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.47-63
    • /
    • 2005
  • In the present study, we suggest a new method for designing complex ship hull forms with multiple domain B-spline surfaces accounting for their topological arrangement, where all subdomains are fully defined in terms of form parameters, e.g., positional, differential and integral descriptors. For the construction of complex hull forms, free-form elementary models such as forebody, afterbody and bulbs are united by Boolean operation and blending surfaces in compliance with the sectional area curve (SAC) of the whole ship. This new design process in this paper is called Sectional Area Curve-Balanced Parametric Design (SAC-BPD).

Practical Hull Form Design using VOB (VOB를 이용한 선형 설계 실용화에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.235-242
    • /
    • 2016
  • In general, ship hull form design is carried out in two stages. In the first stage, the longitudinal variation of the sectional area curves is adapted from a similar mother ship to determine the volume distribution in ships. At this design stage, the initial design conditions of displacement, longitudinal center of buoyancy, etc. are satisfied and the global hydrodynamic properties of the structure are optimized. The second stage includes the local designing of the sectional forms. Sectional forms are related to the local pressure resistance in the fore- and aft-body shapes, cargo boundaries, interaction between the hull and propeller, etc. These relationships indicate that the hull sections need to be optimized in order to minimize the local resistance. The volumetric balanced (VOB) variation of ship hull forms has been suggested by Kim (2013) as a generalized, systematic variation method for determining the sectional area curves in hull form design. This method is characterized by form parameters and is based on an optimization technique. This paper emphasizes on an extensional function of the VOB considering a geometrical wave profile. We select a container ship and an LNG carrier to demonstrate the applicability of the proposed technique. Through analysis, we confirm that the VOB method, considering the geometrical wave profile, can be used as an efficient tool in the hull form design for ships.

A Numerical Study on the Effect of Volute Geometry on the Performance of Centrifugal Pump (볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Kim, Deok-Su;Jeon, Sang-Gyu;Yoon, Joon-Yong;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.44-49
    • /
    • 2006
  • In this study, the effects of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate, the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

A Numerical Study on the effect of Volute Geometry on the Performance of Centrifugal Pump (볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Kim, Deok-Su;Choi, Young-Seok;Jeon, Sang-Gyu;Yoon, Joon-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.497-502
    • /
    • 2005
  • In this study. the effect of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate. the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry. The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

  • PDF

The role of the iliotibial band cross-sectional area as a morphological parameter of the iliotibial band friction syndrome: a retrospective pilot study

  • Park, Jiyeon;Cho, Hyung Rae;Kang, Keum Nae;Choi, Kun Woong;Choi, Young Soon;Jeong, Hye-Won;Yi, Jungmin;Kim, Young Uk
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.229-233
    • /
    • 2021
  • Background: Iliotibial band friction syndrome (ITBFS) is a common disorder of the lateral knee. Previous research has reported that the iliotibial band (ITB) thickness (ITBT) is correlated with ITBFS, and ITBT has been considered to be a key morphologic parameter of ITBFS. However, the thickness is different from inflammatory hypertrophy. Thus, we made the ITB cross-sectional area (ITBCSA) a new morphological parameter to assess ITBFS. Methods: Forty-three patients with ITBFS group and from 43 normal group who underwent T1W magnetic resonance imaging were enrolled. The ITBCSA was measured as the cross-sectional area of the ITB that was most hypertrophied in the magnetic resonance axial images. The ITBT was measured as the thickest site of ITB. Results: The mean ITBCSA was 25.24 ± 6.59 ㎟ in the normal group and 38.75 ± 9.11 ㎟ in the ITBFS group. The mean ITBT was 1.94 ± 0.41 mm in the normal group and 2.62 ± 0.46 mm in the ITBFS group. Patients in ITBFS group had significantly higher ITBCSA (P < 0.001) and ITBT (P < 0.001) than the normal group. A receiver operator characteristic curve analysis demonstrated that the best cut-off value of the ITBT was 2.29 mm, with 76.7% sensitivity, 79.1% specificity, and area under the curve (AUC) 0.88. The optimal cut-off score of the ITBCSA was 30.66 ㎟, with 79.1% sensitivity, 79.1% specificity, and AUC 0.87. Conclusions: ITBCSA is a new and sensitive morphological parameter for diagnosing ITBFS, and may even be more accurate than ITBT.

Estimation of Ship Resistance by Statistical Analysis and its Application to Hull Form Modification (통계해석에 의한 저항 추정 및 선형 개량)

  • S.W.,Hong;K.J.,Cho;D.S.,Yun;E.C.,Kim;W.C.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.28-38
    • /
    • 1988
  • This paper describes the statistical analysis method of predicting the ship resistance. The equation for the wavemaking resistance coefficient is derived as the principal dimensions and sectional area coefficients by using the wavemaking resistance theory and its regression coefficients are determined from the regression analysis of the resistance test results. The equation for the form factor is derived by purely regression analysis of the principal dimensions, sectional area coefficients and resistance test results. Also, it is shown that the wavemaking resistance can be minimize by varying the sectional area curve without changing the principal dimensions of the ship. This methods were applied to the resistance prediction of a bulk carrier. And the, the modified hull form with minimum wavemaking resistance was obtained and the reduction of effective power was confirmed by the resistance test.

  • PDF