• 제목/요약/키워드: Secretome

검색결과 24건 처리시간 0.016초

Extracellular Proteome Profiling of Bacillus pumilus SCU11 Producing Alkaline Protease for Dehairing

  • Wang, Chao;Yu, Shiqiang;Song, Ting;He, Tingting;Shao, Huanhuan;Wang, Haiyan
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1993-2005
    • /
    • 2016
  • Bacillus pumilus is one of the most characterized microorganisms that are used for high-level production of select industrial enzymes. A novel B. pumilus SCU11 strain possessing high alkaline protease activity was obtained in our previous work. The culture supernatant of this strain showed efficient dehairing capability with minimal collagen damage, indicating promising potential applications in the leather industry. In this study, the strain's extracellular proteome was identified by LC-MS/MS-based shotgun proteomic analysis, and their related secretory pathways were characterized by BLAST searches. A total of 513 proteins, including 100 actual secreted and 413 intracellular proteins, were detected in the extracellular proteome. The functions of these secreted proteins were elucidated and four complete secretory systems (Sec, Tat, Com, and ABC transporter) were proposed for B. pumilus. These data provide B. pumilus a comprehensive extracellular proteome profile, which is a valuable theoretical and applicative basis for future genetic modifications and development of industrial enzymes.

대식세포 분화 조절을 통한 대시호탕의 암세포 전이 억제 효과 (Anti-migration Effects of the Daesiho-tang (Da Chai Hu-Tang) Water Extract in Cancer Cells by Regulating Macrophage Polarization)

  • 정재훈;박신형
    • 동의생리병리학회지
    • /
    • 제38권1호
    • /
    • pp.32-37
    • /
    • 2024
  • The aim of this study was to investigate the role of Daesiho-tang (Da Chai Hu-Tang) water extract (DSTE) in regulating chronic stress-induced cancer progression, focusing on its activity in modulating tumor-associated macrophages (TAMs). Different stimuli can polarize TAMs into immune-stimulating M1 macrophages or immunosuppressive M2 macrophages. During cancer progression, M2 phenotype increases and supports tumor growth, angiogenesis and metastasis. Notably, chronic stress-induced catecholamines promote M2 macrophage polarization. In this study, we investigated whether DSTE regulates norepinephrine (NE)-induced M2 macrophage polarization in RAW 264.7 mouse macrophage cells. Even though NE itself did not increase the expression of M2 markers, the conditioned media of NE-treated 4T1 mouse breast cancer cells (NE CM) significantly up-regulated M2 markers in RAW 264.7 cells, suggesting that NE-regulated cancer cell secretome stimulated M2 polarization. However, such increase was abrogated by DSTE. NE CM also induced phosphorylation of signal transducer and activator of transcription 6 (STAT6) in RAW 264.7 cells, which was clearly reversed by pretreatment with DSTE, demonstrating that DSTE inhibited M2 polarization by inactivating STAT6. Finally, M2-polarized RAW264.7 cells by NE CM markedly increased the migration of 4T1 cells. However, such increase was completely reversed by co-treating RAW264.7 cells with NE CM and DSTE, indicating that DSTE attenuated cancer cell migration by blocking M2 polarization. Taken together, our results suggest a probable use of DSTE for cancer patients under chronic stress by regulating M2 macrophage polarization.

인체 섬유아세포 및 케라티노사이트에 대한 지방줄기세포 분비물의 세포생물학적 기능 (Cell Biological Function of Secretome of Adipose-Derived Stem Cells on Human Dermal Fibroblasts and Keratinocytes)

  • 이재설;이종환
    • 한국미생물·생명공학회지
    • /
    • 제40권2호
    • /
    • pp.117-127
    • /
    • 2012
  • 피부재생에 대한 지방줄기세포 배양상등액(ADSC-CM)의 효능에 대한 연구를 진행하였다. ADSC-CM이 피부재생에 기여하는 기작은 명확하지 못하지만, ADSC-CM은 다양한 분비물을 포함하고 있고 따라서 피부트러블 처리를 위한 훌륭한 재료이다. 저 산소 상태에서 생산된 ADSC-CM, 즉 advanced adipose-derived stem cell protein extract (AAPE)는 피부재생에 보다 좋은 재료이다. 본 연구는 피부 재생에 결정적 역할을 하는 인체 primary 세포인 섬유아세포(HDF)와 케라티노사이트(HK)를 이용하여 AAPE의 효능을 검증하였다. 0.32 ${\mu}g/ml$ AAPE에서 콜라겐 합성이 관찰 되었으며 AAPE는 stress fiber 형성을 강화하였다. DNA microarray 결과에서는 세포증식, 세포이동, 세포부착, 상처반응에 관여하는 133개의 유전자 발현이 조절되는 것을 알았다. Antibody array를 통해 CD54, FGF-2, GM-CSF, IL-4, IL-6, VEGF, TGF-${\beta}2$, TGF-${\beta}3$, MMP-1, MMP-10, 그리고 MMP-19와 같은 MMP, 성장인자, 사이토카인등 25개의 알려진 단백질이 포함되어 있다는 것을 알았다. 따라서, AAPE는 HK의 세포생물학적 기능을 활성화 할 수 있다고 사료되며 HDF에서는 콜라겐 합성을 유도하였다. 이러한 결과는 AAPE가 피부재생에 임상적 적용이 가능하리라는 것을 의미한다.

Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells

  • Katagiri, Wataru;Kawai, Takamasa;Osugi, Masashi;Sugimura-Wakayama, Yukiko;Sakaguchi, Kohei;Kojima, Taku;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제39권
    • /
    • pp.8.1-8.8
    • /
    • 2017
  • Background: For an effective bone graft for reconstruction of the maxillofacial region, an adequate vascular network will be required to supply blood, osteoprogenitor cells, and growth factors. We previously reported that the secretomes of bone marrow-derived mesenchymal stem cells (MSC-CM) contain numerous growth factors such as insulin-like growth factor (IGF)-1, transforming growth factor $(TGF)-{\beta}1$, and vascular endothelial growth factor (VEGF), which can affect the cellular characteristics and behavior of regenerating bone cells. We hypothesized that angiogenesis is an important step for bone regeneration, and VEGF is one of the crucial factors in MSC-CM that would enhance its osteogenic potential. In the present study, we focused on VEGF in MSC-CM and evaluated the angiogenic and osteogenic potentials of MSC-CM for bone regeneration. Methods: Cytokines in MSC-CM were measured by enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were cultured with MSC-CM or MSC-CM with anti-VEGF antibody (MSC-CM + anti-VEGF) for neutralization, and tube formation was evaluated. For the evaluation of bone and blood vessel formation with micro-computed tomography (micro-CT) and for the histological and immunohistochemical analyses, a rat calvarial bone defect model was used. Results: The concentrations of IGF-1, VEGF, and $TGF-{\beta}1$ in MSC-CM were $1515.6{\pm}211.8pg/mL$, $465.8{\pm}108.8pg/mL$, and $339.8{\pm}14.4pg/mL$, respectively. Tube formation of HUVECs, bone formation, and blood vessel formation were increased in the MSC-CM group but decreased in the MSC-CM + anti-VEGF group. Histological findings suggested that new bone formation in the entire defect was observed in the MSC-CM group although it was decreased in the MSC-CM + anti-VEGF group. Immunohistochemistry indicated that angiogenesis and migration of endogenous stem cells were much more abundant in the MSC-CM group than in the MSC-CM + anti-VEGF group. Conclusions: VEGF is considered a crucial factor in MSC-CM, and MSC-CM is proposed to be an adequate therapeutic agent for bone regeneration with angiogenesis.