• Title/Summary/Keyword: Secretion pathway

Search Result 241, Processing Time 0.022 seconds

Studies on the mechanism of Nitric oxide (NO) induction in the Peritoneal Macrophage by HERBA SAURUI (HS) (삼백초(三白草)가 복강(腹腔) 대식세포(大食細胞)로부터 Nitric Oxide(NO) 유리기전(遊離機轉)에 대한 연구(硏究))

  • Jeon, Gil-Hwan;Shin, Min-Kyo;Song, Ho-Joon
    • The Journal of Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.36-49
    • /
    • 1998
  • HERBA SAURURI (HS) has been known to use antiinflammatory drug. To investigated the mechanism of HS-induced NO synthesis, I evaluated the ability of protein kinase C (PKC) inhibitors such as staurosporine (STSN) or polyymyxin B to block HS-induced effects. HS alone had only a small effect, whereas in combination with $rIFN-{\gamma}$, markedly increased NO synthesis in a dose dependent manner. STSN and polymyxin B decreased NO synthesis, which had been induced by $rIFN-{\gamma}$, plus HS. Furthermore, prolonged incubation of the cells with phorbol ester, which down-regulates PKC activity abolished synergistic cooperative effect of HS with $rIFN-{\gamma}$ on NO synthesis. STSN and Polymyxin B potently inhibited HS-induced $TNF-{\alpha}$ secretion by $rIFN-{\gamma}$ plus HS. However, $rIFN-{\gamma}$ plus $TNF-{\alpha}-induced$ NO synthesis was not blocked by STSN or polymyxin B. On the other hand, tyrosine kinase inhibitor, genistein, blocked the NO synthesis and $TNF-{\alpha}$ secretion by $rIFN-{\gamma}$ plus HS. In conlusion, the present results strongly suggest that the capacity of HS to increase NO synthesis from $rIFN-{\gamma}-primed$ macrophages is the result of HS-induced $TNF-{\alpha}$ secretion via the signal transduction pathway of PKC and tyrosine kinase.

  • PDF

Ca2+ entry through reverse Na+/Ca2+ exchanger in NCI-H716, glucagon-like peptide-1 secreting cells

  • Choi, Kyung Jin;Hwang, Jin Wook;Kim, Se Hoon;Park, Hyung Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.219-225
    • /
    • 2022
  • Glucagon like peptide-1 (GLP-1) released from enteroendocine L-cells in the intestine has incretin effects due to its ability to amplify glucose-dependent insulin secretion. Promotion of an endogenous release of GLP-1 is one of therapeutic targets for type 2 diabetes mellitus. Although the secretion of GLP-1 in response to nutrient or neural stimuli can be triggered by cytosolic Ca2+ elevation, the stimulus-secretion pathway is not completely understood yet. Therefore, the aim of this study was to investigate the role of reverse Na+/Ca2+ exchanger (rNCX) in Ca2+ entry induced by muscarinic stimulation in NCI-H716 cells, a human enteroendocrine GLP-1 secreting cell line. Intracellular Ca2+ was repetitively oscillated by the perfusion of carbamylcholine (CCh), a muscarinic agonist. The oscillation of cytosolic Ca2+ was ceased by substituting extracellular Na+ with Li+ or NMG+. KB-R7943, a specific rNCX blocker, completely diminished CCh-induced cytosolic Ca2+ oscillation. Type 1 Na+/Ca2+ exchanger (NCX1) proteins were expressed in NCI-H716 cells. These results suggest that rNCX might play a crucial role in Ca2+ entry induced by cholinergic stimulation in NCI-H716 cells, a GLP-1 secreting cell line.

Inhibitory Effects of Chios Mastic Gum on Gastric Acid Secretion by Histamine-Related Pathway in a Rat Model and Primary Parietal Cells (위염 동물모델과 위 벽세포에서 히스타민 경로를 통한 매스틱검(Chios Mastic Gum)의 위산 분비 억제효과 및 기전 연구)

  • Nam, Da-Eun;Kim, Ok Kyung;Shim, Tae Jin;Lee, Jum Kyun;Hwang, Kwon-Tack
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.10
    • /
    • pp.1500-1509
    • /
    • 2014
  • The object of this study was to investigate the inhibitory effects of chios mastic gum (MG) on gastric acid secretion in an ethanol-induced SD rat model and primary parietal cells. Rats were randomly divided into four groups: Vehicle (normal group), Control (treated with ethanol), MG50 (treated with ethanol and mastic gum at 50 mg/kg b.w), MG100 (treated with ethanol and mastic gum at 100 mg/kg b.w). Groups treated with both MG50 and MG100 showed attenuation of gastric mucosal injury, sub-epithelial loss, hemorrhaging, and gastric juice secretion. We also examined the acidity of gastric juice during gastric injury. Oral administration of both MG50 and MG100 significantly decreased acidity of gastric juice by % and %, respectively. To examine the stimulatory factors related to gastric acid secretion, mRNA expression levels of H2r, M3r, CCK2r, and $H^+/K^+$ ATPase were measured by real-time PCR. Compared with a vehicle group, mRNA expression levels of H2r, CCK2r, and $H^+/K^+$ ATPase clearly increased in the control group. However, levels of H2r, CCK2r, and $H^+/K^+$ ATPase slightly but significantly decreased in MG-treated groups compared with control. Blood level of histamine significantly decreased in MG-treated groups, which indicates the involvement of MG on in histamine-related acid secretion. To identify the mode of action of MG in regulating histamine-related pathways, intracellular level of cAMP and mRNA levels of H2r, M3r, CCK2r, and $H^+/K^+$ ATPase were measured in primary parietal cells. While mRNA levels of M3r and CCK2r remained unchanged, levels of H2r and $H^+/K^+$ ATPase significantly decreased upon MG treatment. Subsequently, intracellular levels of cAMP decreased. These results suggest that mastic gum has the ability to inhibit gastric acid secretion by regulating a histamine-related pathway.

MAP Kinase Activation is Required for the MMP-9 Induction by TNF-Stimulation

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1257-1262
    • /
    • 2005
  • MMP-9 is a metalloproteinase capable of basement membrane degradation in vivo. Expression of MMP-9 can be found in normal conditions such as trophoblasts, osteoclasts, and leukocytes and their precursors. They also occur as well as in pathological conditions, such as the invasive growth of primary tumors, metastasis, angiogenesis, rheumatoid arthritis, and periodontal diseases. MMP-9 upregulation can be highly induced by a wide range of agents. These agents include growth factors, cytokines, cell-cell, and cell-ECM adhesion molecules, and agents altering cell shape. Here, we observed that TNF-$\alpha$ stimulated human monocytic cell line, HL-60 produced MMP-9 in a dose and time dependent manner. Real time PCR results indicated transcriptional upregulation of MMP-9 as early as 3 h post TNF-$\alpha$ stimulation. To investigate the signaling pathway underlined in TNF-$\alpha$ induced MMP-9 expression, three MAP kinase inhibitors were added to cells 1 h prior to TNF-$\alpha$ treatment. The ERK inhibitor completely abolished MMP-9 expression by TNF-$\alpha$. But neither p38 MAP kinase nor JNK inhibitor had an effect on TNF-$\alpha$ induced MMP-9 expression, suggesting that ERK activation is required for the MMP-9 induction by TNF-$\alpha$. Taken together, we found that TNF-$\alpha$ stimulation facilitates ERK activation, which results in the transcriptional upregulation of MMP-9 gene and subsequent MMP-9 production and secretion.

Ginseng and Diabetes: The Evidences from In Vitro, Animal and Human Studies

  • Yuan, Hai-Dan;Kim, Jung-Tae;Kim, Sung-Hoon;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.27-39
    • /
    • 2012
  • Panax ginseng exhibits pleiotropic beneficial effects on cardiovascular system, central nervous system, and immune system. In the last decade, numerous preclinical findings suggest ginseng as a promising therapeutic agent for diabetes prevention and treatment. The mechanism of ginseng and its active components is complex and is demonstrated to either modulate insulin production/secretion, glucose metabolism and uptake, or inflammatory pathway in both insulin-dependent and insulin-independent manners. However, human studies are remained obscure because of contradictory results. While more studies are warranted to further understand these contradictions, ginseng holds promise as a therapeutic agent for diabetes prevention and treatment. This review summarizes the evidences for the therapeutic potential of ginseng and ginsenosides from in vitro studies, animal studies and human clinical trials with a focus on diverse molecular targets including an AMP-activated protein kinase signaling pathway.

Effects of Adipokine Retnla on the Regulation of High-Density Lipoprotein Metabolism

  • Lee, Mi-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.139-145
    • /
    • 2016
  • In this paper, we propose to evaluate the effect of Resistin-like molecule alpha (Retnla) on the expression of transporters involved in modulating concentrations of peripheral cholesterol and plasma high-density lipoprotein (HDL) cholesterol. High levels of blood cholesterol are a well-recognized risk factor for atherosclerosis and are eliminated via the process of reverse cholesterol transport (RCT). We recently showed that Retnla ameliorates hypercholesterolemia and atherosclerosis by increasing biliary cholesterol secretion, the final step of the process, in low-density lipoprotein receptor-deficient mice. However, the role of Retnla in HDL-mediated cholesterol efflux, initial step of RCT pathway, is not yet clear. To identify cholesterol transport genes regulated by Retnla, we performed an extensive microarray-based gene expression screen using livers from Retnla-overexpressing (Tg) mice and control animals. The most significant change in Retnla-Tg mice was an upregulation of ATP-binding cassette sub-family G member 4 (Abcg4) transport and was validated using quantitative RT-PCR. The validated gene was also induced by treatment of purified Retnla protein in RAW 264.7 cells incubated with acetylated low-density lipoprotein and Hepa1c1c7 cells. Taken together, these results indicates that Retnla might also accelerate initial step of RCT pathway, suggesting therapeutic value of Retnla in the treatment of hypercholesterolemia and atherosclerosis.

Effects of Artificial Digestive Juice on the Antitumor-Immunity Activity of Protein-bound Polysaccharide from Ganoderma lucidum (인공소화액이 영지 단백 다당체의 항암-면역 활성에 미치는 영향)

  • 유정실;현진원;김하원;심미자;김병각
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.347-353
    • /
    • 2000
  • To examine influence of artificial digestive juice on the antitumor activity of Ganoderma lucidum-A(GL-A), protein-bound polysaccharide from Ganoderma lucidum, we compared the digested protein-bound polysaccharide with undigested one both on immunopotentiating activity and influence of digestive juices. Protein-bound polysaccharide GL-B was obtained by digesting the antitumor component GL-A with artificial digestive Juices in vitro. When GL-A was administered orally to sarcoma 180 tumor-bearing ICR mice, the life prolonging effect was exhibited in a dose dependent manner Not only GL-A but GL-B increased the production of colony forming unit (CFU) to 10- and 8-fold of that of the control, respectively. Both of the protein-bound polysaccharides also showed the secretion of nitric oxide in RAW 264.7 cell lines to 3.5-and 3.7-fold of that of the control, respectively: GL-A activated components of the alternative complement pathway, whereas GL-B did not. In humoral immunity GL-A increased the activity of alkaline phosphatase in differentiated B cells to 3 times and GL-B to 4 times of that of the control. These results showed that the artificial digestive juices had no influence on the antitumor activity of the protein-bound polysaccharide from Ganoderma lucidum and that its immunomodulating activity retained after treatment with artificial digestive juice. And this provides a basis of the protein-bound polysaccharide of Ganoderma lucidum as an peroral anticancer drug.

  • PDF

Improved immune-enhancing activity of egg white protein ovotransferrin after enzyme hydrolysis

  • Lee, Jae Hoon;Kim, Hyeon Joong;Ahn, Dong Uk;Paik, Hyun-Dong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1159-1168
    • /
    • 2021
  • Ovotransferrin (OTF), an egg protein known as transferrin family protein, possess strong antimicrobial and antioxidant activity. This is because OTF has two iron binding sites, so it has a strong metal chelating ability. The present study aimed to evaluate the improved immune-enhancing activities of OTF hydrolysates produced using bromelain, pancreatin, and papain. The effects of OTF hydrolysates on the production and secretion of pro-inflammatory mediators in RAW 264.7 macrophages were confirmed. The production of nitric oxide (NO) was evaluated using Griess reagent and the expression of inducible nitric oxide synthase (iNOS) were evaluated using quantitative real-time polymerase chain reaction (PCR). And the production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α and interleukin [IL]-6) and the phagocytic activity of macrophages were evaluated using an ELISA assay and neutral red uptake assay, respectively. All OTF hydrolysates enhanced NO production by increasing iNOS mRNA expression. Treating RAW 264.7 macrophages with OTF hydrolysates increased the production of pro-inflammatory cytokines and the phagocytic activity. The production of NO and pro-inflammatory cytokines induced by OTF hydrolysates was inhibited by the addition of specific mitogen-activated protein kinase (MAPK) inhibitors. In conclusion, results indicated that all OTF hydrolysates activated RAW 264.7 macrophages by activating MAPK signaling pathway.

Carpomitra costata Extract Suppresses Interleukin-1β-Induced Inflammatory Response in SW1353 Human Chondrocytes through Suppressing NF-κB Signaling Pathway

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Osteoarthritis (OA) is an inflammatory degenerative joint disease that is accompanied by irreversible joint cartilage destruction. Recently, the antioxidant effects of Carpomitra costata, which is a type of brown algae, have been reported, but their effects on OA have not been investigated. In this study, the anti-osteoarthritic effect of the ethanol extract of C. costata (EECC) on SW1353 human chondrocytes was studied. Results showed that EECC significantly attenuated the interleukin-1β (IL-1β)-induced release of pro-inflammatory mediators, including prostaglandin E2 and nitric oxide (NO), as well as expressions of cyclo-oxygenase-2 and inducible NO synthase. EECC also inhibited the IL-1β-induced expressions of matrix metalloproteinase-1, -3, and -13 in SW1353 chondrocytes, which reduced their extracellular secretion. In addition, the oxidative stress induced by IL-1β was confirmed to be blocked by EECC due to the inhibition of reactive oxygen species generation. Moreover, EECC suppressed IL-1β-mediated translocation of nuclear factor-kappa B (NF-κB) from cytosol into the nucleus and the degradation of IκB-α, which indicates that EECC exhibits anti-inflammatory effects by inhibiting the NF-κB signaling pathway. These results are the first to demonstrate the anti-inflammatory activities of C. costata extracts in chondrocytes, thus suggesting that this algae extract may be used in the treatment of OA.

Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways

  • Zhong, Xiaohui;Zhang, Feng;Yin, Xinyao;Cao, Hong;Wang, Xuesong;Liu, Dongsong;Chen, Jing;Chen, Xue
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.765-774
    • /
    • 2021
  • Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.