• 제목/요약/키워드: Secretion pathway

검색결과 241건 처리시간 0.029초

Chlorpromazine Inhibits Store-operated Calcium Entry and Subsequent Norepinephrine Secretion in PC12 Cells

  • Park, Se-Young;Kim, Yong-Hyun;Lee, Yong-Kyu;Kim, Kyong-Tai
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.67-67
    • /
    • 1999
  • The effect of chlorpromazine on the store-operated Ca$\^$2+/ entry subsequently activated via the phospholipase C signaling pathway was investigated in PC12 cells. Chlorpromazine caused a rapid decline of the bradykinin-induced Ca$\^$2+/ increase to basal level without attenuating the peak level.(omitted)

  • PDF

Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

  • Chen, Xuenan;Wang, Manying;Xu, Xiaohao;Liu, Jianzeng;Mei, Bing;Fu, Pingping;Zhao, Daqing;Sun, Liwei
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.411-418
    • /
    • 2017
  • Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor ${\beta}1$, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor ${\beta}1$ and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

NO/cGMP Pathway is Involved in Exocrine Secretion from Rat Pancreatic Acinar Cells

  • Ahn, Seong-Hoon;Seo, Dong-Wan;Ko, Young-Kwon;Sung, Kae-Suk;Bae, Gyu-Un;Yoon, Jong-Woo;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.657-663
    • /
    • 1998
  • The enzyme responsible for the synthesis of nitric oxide (NO) from L-arginine in mammalian tissues is known as nitric oxide synthase (NOS) (EC.1.14.13.39). In the present study, the role of NO in the regulation of exocrine secretion was investigated in rat pancreatic acinar cells. Treatment of rat pancreatic acinar cells with cholecystokinin-octapeptide (CCK-OP) resulted in an increase in the arginine conversion to citrulline, the amount of $NO_X$, the release of amylase, and the level of CGMP. Especially, CCK-OP-stimulated increase of arginine to citrulline transformation, the amount of $NO_X$, and CGMP level were completely counteracted by the inhibitor of NOS, NG-monomethyl-L-arginine (MMA), by contrast, that of amylase release was partially reduced. Furthermore, MMA-induced decrease of NOS activity and amylase release showed dose-dependent pattern. The data on the time course of CCK-OP-induced citrulline formation and CGMP rise indicate that NOS and guanylate cyclase were activated by treatment of CCK-OP. However, the mechanism of agonist-stimulated guanylate cyclase activation in acinar cells remains unknown. Therefore, activation of NOS is one of the early events in receptor-mediated cascade of reactions in pancreatic acinar cells and NO, not completely, but partially mediate pancreatic enzyme exocrine secretion.

  • PDF

마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구 (Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • 제15권3호
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

가묘(家猫)에 있어서 설인신경중추단자극(舌咽神經中樞端刺戟)에 의한 반사성(反射性) 악하선분필(顎下腺分泌)에 미치는 경부교감신경(頸部交感神經)의 영향(影響) (Role of the Cervical Sympathetics on the Submaxillary Reflex Secretion Evoked by Stimulation of the Afferent Glossopharyngeal Nerve of the Cat)

  • 길원식;박사훈
    • The Korean Journal of Physiology
    • /
    • 제21권2호
    • /
    • pp.313-321
    • /
    • 1987
  • To investigate whether the cervical sympathetics contains specific secretory fibers for the salivary glands, reflex salivation was evoked and the role of the sympathetics or the reflex was examined in ketamine-anesthetized cat. Stimulation of the central end of the glossopharyngeal nerve produced a copious secretion from the submaxillary gland and the response was not affected by the section of the cervical sympathetics or by the administration of phenoxybenzamine, whereas the response was abolished by severing the chorda tympani or by the administration of atropine. The salivary response was always associated with an increase in glandular blood flow. Both salivary and blood flow responses were decreased markedly by the superimposed stimulation of the cervical sympathetics or by the administration of norepinephrine. The decreased submaxillary blood flow always preceded the decrease in salivary flow on stimulation of the cervical sympathetics and the decreased blood flow recovered prior to the salivary flow upon cessation of the sympathetic stimulation. The inhibitory effects of the sympathetics and norepinephrine were completely abolished by the pretreatment with phenoxybenzamine. These results indicate that the glossopharyngeal nerve is one of the afferent limbs of the submaxillary salivary reflex and the chorda tympani is the only efferent limb of the reflex pathway. Thus, it is suggested that the cervical sympathetics does not contain the specific secretory fibers for the gland, but plays a role in inhibiting the reflex secretion by decreasing the blood flow to the gland.

  • PDF

Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression

  • Ahn, Huijeong;Han, Byung-Cheol;Kim, Jeongeun;Kang, Seung Goo;Kim, Pyeung-Hyeun;Jang, Kyoung Hwa;So, Seung Ho;Lee, Seung-Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.291-299
    • /
    • 2019
  • Background: Ginsenosides of Korean Red Ginseng extracts (RGE) and its saponin components suppress secretion of inflammasome-mediating cytokines, whereas the nonsaponin fraction (NS) of RGE oppositely stimulates cytokine secretion. Although direct exposure of NS to macrophages in mice induces cytokine production, oral administration of NS has not been studied in inflammasome-related disease in animal models. Methods: Mice were fed RGE or NS for 7 days and then developed peritonitis. Peritoneal cytokines were measured, and peritoneal exudate cells (PECs) were collected to assay expression levels of a set of toll-like receptors (TLRs) and cytokines in response to NS ingestion. In addition, the role of intestinal bacteria in NS-fed mice was assessed. The effect of preexposure to NS in bone marrow-derived macrophages (BMDMs) on cytokine production was further confirmed. Results: NS ingestion attenuated secretion of peritoneal cytokines resulting from peritonitis. In addition, the isolated PECs from NS-fed mice presented lower TLR transcription levels than PECs from control diet-fed mice. BMDMs treated with NS showed downregulation of TLR4 mRNA and protein expression, which was mediated by the $TLR4-MyD88-NF{\kappa}B$ signal pathway. BMDMs pretreated with NS produced less cytokines in response to TLR4 ligands. Conclusion: NS administration directly inhibits TLR4 expression in inflammatory cells such as macrophages, thereby reducing secretion of cytokines during peritonitis.

Inhibition of the Expression of Matrix Metalloproteinases in Articular Chondrocytes by Resveratrol through Affecting Nuclear Factor-Kappa B Signaling Pathway

  • Kang, Dong-Geun;Lee, Hyun Jae;Lee, Choong Jae;Park, Jin Sung
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.560-567
    • /
    • 2018
  • In the present study, we tried to examine whether resveratrol regulates the expression of matrix metalloproteinases (MMPs) through affecting nuclear factor-kappa B ($NF-{\kappa}B$) in articular chondrocytes. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-${\beta}$ ($IL-1{\beta}$)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of resveratrol on $IL-1{\beta}$-induced secretion of MMP-3 was investigated in rabbit articular chondrocytes using western blot analysis. To elucidate the action mechanism of resveratrol, effect of resveratrol on $IL-1{\beta}$-induced $NF-{\kappa}B$ signaling pathway was investigated in SW1353, a human chondrosarcoma cell line, by western blot analysis. The results were as follows: (1) resveratrol inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) resveratrol reduced the secretion of MMP-3; (3) resveratrol inhibited $IL-1{\beta}$induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa $B{\alpha}$ ($I{\kappa}B{\alpha}$); (4) resveratrol inhibited $IL-1{\beta}$-induced phosphorylation and nuclear translocation of $NF-{\kappa}B$ p65. This, in turn, led to the down-regulation of gene expression of MMPs in SW1353 cells. These results suggest that resveratrol can regulate the expression of MMPs through affecting $NF-{\kappa}B$ by directly acting on articular chondrocytes.

Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

  • Yu, Wan-Guo;He, Hao;Yao, Jing-Yun;Zhu, Yi-Xiang;Lu, Yan-Hua
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.549-556
    • /
    • 2015
  • Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key "late" proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKC${\alpha}$). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKC${\alpha}$ signaling pathway.

The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages

  • Lee, Hyo-Ji;Kim, Keun-Cheol;Han, Jeong A;Choi, Sun Shim;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.26-32
    • /
    • 2015
  • Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-${\alpha}$ and IL-6 through the delayed activation of the NF-${\kappa}B$ pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-${\alpha}$ secretion and restored NF-${\kappa}B$ signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.

Phloretin Protects Macrophages from E. coli-Induced Inflammation through the TLR4 Signaling Pathway

  • Chauhan, Anil Kumar;Jang, Mihee;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.333-340
    • /
    • 2020
  • Macrophages are the cells of the first-line defense system, which protect the body from foreign invaders such as bacteria. However, Gram-negative bacteria have always been the major challenge for macrophages due to the presence of lipopolysaccharides on their outer cell membrane. In the present study, we evaluated the effect of phloretin, a flavonoid commonly found in apple, on the protection of macrophages from Escherichia coli infection. RAW 264.7 cells infected with standard E. coli, or virulent E. coli K1 strain were treated with phloretin in a dose-dependent manner to examine its efficacy in protection of macrophages. Our results revealed that phloretin treatment reduced the production of nitric oxide (NO) and generation of reactive oxygen species along with reducing the secretion of proinflammatory cytokines induced by the E. coli and E. coli K1 strains in a concentration-dependent manner. Additionally, treatment of phloretin downregulated the expression of E. coli-induced major inflammatory markers i.e. cyclooxygenase-2 (COX-2) and hemeoxygenase-1 (HO-1), in a concentration dependent manner. Moreover, the TLR4-mediated NF-κB pathway was activated in E. coli-infected macrophages but was potentially downregulated by phloretin at the transcriptional and translational levels. Collectively, our data suggest that phloretin treatment protects macrophages from infection of virulent E. coli K1 strain by downregulating the TLR4-mediated signaling pathway and inhibiting NO and cytokine production, eventually protecting macrophages from E. coli-induced inflammation.