• Title/Summary/Keyword: Secretion pathway

Search Result 242, Processing Time 0.026 seconds

Fructus Liquidambaris Contributes to the Chemotaxis of Eosinophils and Secretion of Cytokines in A549 Human Epithelial Cells (로로통(路路通)이 천식유발 chemokine 분비와 호산구 chemotaxis에 미치는 영향)

  • Ryu, Han-Chon;Jung, Sung-Ki;Jung, Hee-Jae;Lim, Sabina;RLee, Hyung-Goo
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.146-160
    • /
    • 2008
  • Objectives: The present study was designated to evaluate the direct effects of Fructus Liquidambaris on suppression of eosinophil activity and on suppression of chemokines such as eotaxin, IL-8, ICAM-1, and VCAM-1, in vitro. Methods: A549 cells were stimulated with TNF-$\alpha$ (100 ng/ml), IL-4 (100 ng/ml) or IL-$1{\beta}$(10 ng/ml) to induce chemokines and adhesion molecules involved in eosinophil chemotaxis. Then after treatment of Fructus Liquidambaris, inhibition effect assay such as ELISA, real-time RT-PCR, and chemotaxis assay was performed. Results: Eotaxin level was suppressed in both protein secretion and mRNA expression. Eosinophil recruitment to lung epithelial cells was also reduced by Fructus Liquidambaris, implying the role of eotaxin in eosinophil recruitment. In addition, expression of IL-8 was also suppressed by Fructus Liquidambaris (p<0.05). However, expression of adhesion molecules (ICAM-1, VCAM-1) related to eosinophil was not affected. The eosinophil migration was inhibited at high concentration of Fructus Liquidambaris (p<0.05). Conclusion: These results suggest that Fructus Liquidambaris may regulate a common signaling pathway of eotaxin and IL-8. FS might be of therapeutic value in diseases such as asthma.

  • PDF

The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng

  • Kim, Eunji;Kim, Donghyun;Yoo, Sulgi;Hong, Yo Han;Han, Sang Yun;Jeong, Seonggu;Jeong, Deok;Kim, Jong-Hoon;Cho, Jae Youl;Park, Junseong
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.218-224
    • /
    • 2018
  • Background: Compound K (CK) is a ginsenoside, a metabolite of Panax ginseng. There is interest both in increasing skin health and antiaging using natural skin care products. In this study, we explored the possibility of using CK as a cosmetic ingredient. Methods: To assess the antiaging effect of CK, RT-PCR was performed, and expression levels of matrix metalloproteinase-1, cyclooxygenase-2, and type I collagen were measured under UVB irradiation conditions. The skin hydrating effect of CK was tested by RT-PCR, and its regulation was explored through immunoblotting. Melanin content, melanin secretion, and tyrosinase activity assays were performed. Results: CK treatment reduced the production of matrix metalloproteinase-1 and cyclooxygenase-2 in UVB irradiated NIH3T3 cells and recovered type I collagen expression level. Expression of skin hydrating factors-filaggrin, transglutaminase, and hyaluronic acid synthases-1 and -2-were augmented by CK and were modulated through the inhibitor of ${\kappa}B{\alpha}$, c-Jun N-terminal kinase, or extracellular signal-regulated kinases pathway. In the melanogenic response, CK did not regulate tyrosinase activity and melanin secretion, but increased melanin content in B16F10 cells was observed. Conclusion: Our data showed that CK has antiaging and hydrating effects. We suggest that CK could be used in cosmetic products to protect the skin from UVB rays and increase skin moisture level.

Secretion of Cytokine Stimulating Intercellular Adhesion Molecule-l Expression from THP-l Cells Infected with Human Cytomegalovirus (HCMV에 감염된 TBP-1 세포에서 세포간 부착분자-1 발현 촉진물질의 방출)

  • Kim, Mi-Suk;Yi, Hyun-Ah;Lee, Chan-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.140-146
    • /
    • 2008
  • Human cytomegalovirus (HCMV) stimulates the expression of intercellular adhesion molecule (ICAM-l) on the surface of monocytic THP-1 cells. Stimulation of ICAM-l did not require HCMV gene expression since UV-inactivated HCMV (UV-HCMV) was able to induce ICAM-l expression. ICAM-l expression was also stimulated in uninfected THP-l cells which were fed with culture supernatant of HCMV-infected THP-l cells. Co-culture experiment using trans-well insert supported that HCMV-infected THP-l cells secreted some cytokine(s) stimulating ICAM-l expression. The stimulation of ICAM-l by HCMV-infected cell culture supernatant appears to involve $NF-{\kappa}B$ pathway. Culture supernatant from THP-l cells infected with UV-HCMV, whose gene expression was abrogated, failed to stimulate ICAM-l expression on naive THP-l cells. Thus, HCMV gene expression seems to be required in secretion of cytokine(s) stimulating ICAM-l expression.

Opposing Effects of Arkadia and Smurf on TGFβ1-induced IgA Isotype Expression

  • Choi, Seo-Hyun;Seo, Goo-Young;Nam, Eun-Hee;Jeon, Seong-Hyun;Kim, Hyun-A;Park, Jae-Bong;Kim, Pyeung-Hyeun
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.283-287
    • /
    • 2007
  • $TGF-{\beta}1$ induces Ig germ-line ${\alpha}$ ($GL{\alpha}$) transcription and subsequent class switching recombination (CSR) to IgA. In the present study, we investigated the roles of two E3-ubiquitin ligases, Smurfs (HECT type) and Arkadia (RING finger type) on $TGF{\beta}1$-induced IgA CSR. We found that over-expression of Smurf1 and Smurf2 decreased $TGF{\beta}1$-induced $GL{\alpha}$ promoter activity and strengthened the inhibitory effect of Smad7 on the promoter activity. Further, over-expression of Smurf1 and Smurf2 decreased both Smad3/4-mediated and Runx3-mediated $GL{\alpha}$ promoter activities, suggesting that the Smurfs can down-regulate the major $TGF-{\beta}1$ signaling pathway and decrease $GL{\alpha}$ gene expression. In parallel, the over-expressed Smurf1 decreased the expression of endogenous IgA CSR-predictive transcripts ($GLT_{\alpha}$, $PST_{\alpha}$, and $CT_{\alpha}$) and also $TGF{\beta}1$-induced IgA secretion. Conversely over-expression of Arkadia abolished the inhibitory effect of Smad7 on $TGF{\beta}1$-induced $GLT_{\alpha}$ expression and IgA secretion. Similar results were obtained in the presence of over-expressed Smad7 and Smurf1. These results indicate that Arkadia can amplify $TGF{\beta}1$-induced IgA CSR by degrading Smad7, which interacts with Smurf1. We conclude that Smurf and Arkadia have opposite roles in the regulation of $TGF{\beta}1$-induced IgA isotype expression.

In Vitro Immune-Enhancing Activity of Ovotransferrin from Egg White via MAPK Signaling Pathways in RAW 264.7 Macrophages

  • Lee, Jae Hoon;Ahn, Dong Uk;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1226-1236
    • /
    • 2018
  • Ovotransferrin (OTF) is a well-known protein of the transferrin family with strong iron chelating activity, resulting in its antimicrobial activity. Furthermore, OTF is known to have antioxidant, anticancer, and antihypertensive activities. However, there have been few studies about the immune-enhancing activity of OTF. In current study, we investigated the immune-enhancing activity of OTF using the murine macrophage cells in vitro. The effect of OTF on production of pro-inflammatory mediators and cytokines were determined using Griess assay and quantitative real-time PCR. Using Neutral Red uptake assay, we confirmed the effect of OTF on phagocytic activity of macrophages. Ovotransferrin significantly increased the production of nitric oxide (NO) and secretion of inducible nitric oxide synthase (iNOS) mRNA with no cytotoxic activity. Ovotransferrin (2 mg/mL) stimulated NO production up to $31.9{\pm}3.5{\mu}M$. Ovotransferrin significantly increased the mRNA expression levels of pro-inflammatory cytokines which are tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), Interleukin-$1{\beta}$ (IL-$1{\beta}$), and IL-6: OTF (2 mg/mL) treatment increased the secretion of mRNA for TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 by 22.20-, 37.91-, and 6.17-fold of the negative control, respectively. The phagocytic activity of macrophages was also increased by OTF treatment significantly compared with negative control. Also, OTF treatment increased phosphorylation level of MAPK signaling pathways. These results indicated that OTF has immune-enhancing activity by activating RAW 264.7 macrophages via MAPK pathways.

The Effect of Vitis labruscana B. Leaves Ethanol Extract on the Expression of Amyloid Precursor Protein in Neuroblastoma Cells and on the Acetylcholinesterase Activity (캠벨얼리(Vitis labruscana B.) 잎 에탄올 추출물이 신경세포에서 아밀로이드 전구 단백질의 발현과 아세틸콜린에스테라제 활성에 미치는 영향)

  • Choi, Ha Yeon;Kim, Ju Eun;Ma, Sang Yong;Cho, Hyung Kwon;Kim, Dae Sung;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.102-110
    • /
    • 2022
  • Alzheimer's disease (AD) is the most common form of dementia, and the accumulation of β-amyloid (Aβ) in the brain triggers AD, followed by hyperphosphorylation of tau protein, neurofibrillary tangles, and synapses loss, neuronal cell death, and cognitive decline occur in a chain. In APPswe neuronal cell line, 50 ㎍/ml of Campbell early (Vitis labruscana B.) leaves 50% ethanol extract (VLL) treatment inhibited the secretion of Aβ1-42 by about 63% and the secretion of Aβ1-40 by about 50%. VLL did not target the enzymatic activity of the amyloidogenic pathway and decreased the protein expression of APP. As a result of RT-qPCR (Reverse transcription-quantitative real-time PCR) of the APPswe cell line treated with VLL, it is thought that the protein expression of APP was reduced by inhibiting the transcription process of the APP gene. In addition, VLL inhibited acetylcholinesterase (AChE) enzyme activity in vitro by 27.6% and 54.7%, respectively, at 50 and 100 ㎍/ml concentrations. We found that VLL inhibited the production of Aβ, a dementia-inducing substance, by suppressing the transcription of the APP gene, and that VLL inhibited AChE activity. We suggest that VLL has the potential as a natural drug material that modulates the alleviation of dementia symptoms.

Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing

  • Song Yang;Shuyan Lu;Limei Ren;Shuai Bian;Daqing Zhao;Meichen Liu;Jiawen Wang
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.133-143
    • /
    • 2023
  • Background: Past studies suggested that ginseng extracts and ginseng-derived molecules exerted significant regulatory effects on skin. However, no reports have described the effects of ginseng-derived nanoparticles (GDNPs) on skin cell proliferation and wound healing. In this study, we investigated whether GDNPs regulate the proliferation of skin cells and promote wound healing in a mouse model. Methods: GDNPs were separated and purified via differential centrifugation and sucrose/D2O gradient ultracentrifugation. GDNP uptake, cell proliferation and cell cycle progression were measured by confocal microscopy, CCK-8 assay and flow cytometry, respectively. Cell migration and angiogenic effects were assessed by the wound scratch assay and tube formation assay, respectively. ELISA was used to detect extracellular matrix secretion. The relevant signaling pathway was confirmed by western blotting. The effects of GDNPs on skin wound healing were assessed by wound observation, HE staining, and western blotting. Results: GDNPs possessed the essential features of exosomes, and they were accumulated by skin cells. Treatment with GDNPs notably enhanced the proliferation of HaCaT, BJ and HUVECs. GDNPs also enhanced the migration in HaCaT cells and HUVECs and angiogenesis in HUVECs. GDNPs increased the secretion of MMP-1, fibronectin-1, elastin-1, and COL1A1 in all three cell lines. GDNPs regulated cell proliferation through the ERK and AKT/ mTOR pathways. Furthermore, GDNPs facilitated skin wound healing and decreased inflammation in a mouse skin wound model. Conclusion: GDNPs can promote skin wound healing through the ERK and AKT/mTOR pathways. GDNPs thus represent an alternative treatment for chronic skin wounds.

Ginsenoside Rk3 suppresses U46619-induced human platelets aggregation through regulation of cAMP and PI3K/Akt pathway (U46619 유도의 사람 혈소판에서 cAMP 및 P I3K/Akt 경로의 조절을 통한 Ginsenoside Rk3의 응집억제 효과)

  • Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.221-226
    • /
    • 2023
  • Proper activation and aggregation of platelets are necessary, but excessive or abnormal aggregation can lead to cardiovascular diseases such as stroke, thrombosis, and atherosclerosis. Therefore, identifying a substance that can regulate or inhibit platelet aggregation is important for preventing and treating these diseases. Several studies have shown that certain ginsenoside compounds in Panax ginseng can inhibit platelet aggregation. Among these compounds, Rk3 (G-Rk3) from Panax ginseng needs to be further explored in order to reveal the mechanisms of action during inhibition. G-Rk3 significantly increased amounts of cyclic adenosine monophosphate (cAMP) and led to significant phosphorylation of cAMP-dependent kinase substrates vasodilator-stimulated phosphoprotein and inositol 1,4,5-trisphosphate receptor. Furthermore, the effect of G-Rk3 extended to the inhibition of PI3K/Akt phosphorylation resulting in the reduced secretion of intracellular granules. Ultimately, G-Rk3 effectively inhibited platelet aggregation. Therefore, we suggest G-Rk3's potential as a prophylactic or therapeutic agent for cardiovascular diseases caused by faulty platelet aggregation.

  • PDF

Immunomodulatory effect of the water extract of Aster tataricus through mitogen-activated protein kinase signaling pathway (Aster tataricus 물 추출물의 mitogen-activated protein kinase 신호 전달 경로를 통한 면역 조절 효과)

  • Lee, Chea Yeon;Park, Hyo Sung;Kong, Deok-Hoon;Kim, Young Kwan;Cho, Whajung
    • Journal of Nutrition and Health
    • /
    • v.53 no.5
    • /
    • pp.452-463
    • /
    • 2020
  • Purpose: Aster tataricus (AT) is one of the Asteraceae perennial herbs used in traditional Chinese medicine. The herb contains various bioactive substances, such as flavonoids, isoflavonoids, and phenolic compounds in the roots, and exhibits a range of effects including anti-bacterial, anti-oxidant, and anti-inflammatory activities. This study compared the immunomodulatory effects of ethanol and water extracts of whole AT, except the roots, and analyzed the molecular mechanisms for the regulatory effects on cytokine secretion from THP-1 cells. Methods: The effects of AT extract on the cell viability and proliferation of THP-1 cells were analyzed using the Cell Counting Kit-8 method. The concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the cell culture supernatant of the AT-treated THP-1 cells were measured using an enzyme-linked immunosorbent assay. The protein levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), inhibitor of nuclear factor kappa B (IκBα), and mitogen-activated protein kinase (MAPK) phosphorylation in the cell lysates were determined by western blotting. Results: The water extract and the ethanol extract of AT did not affect the cell viability, and increased the proliferation of THP-1 cells significantly compared to the vehicle. The water extract increased the secretion of IL-1β from THP-1 cells in a dose-dependent manner, but the ethanol extract had no effect. The expression of COX-2 and iNOS protein and the phosphorylation of MAPK and Akt were induced in AT-treated cells. In addition, IκBα was degraded by AT in a concentration-dependent manner. IL-1β secretion by AT was reduced by extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors, while TNF-α secretion was decreased by inhibitors of ERK, p38 MAPK, and JNK. Interestingly, the p38 MAPK inhibitor increased the production of IL-1β by AT further. Conclusion: The water extract of the above-ground parts of AT contains immunomodulatory bioactive substances that stimulate immune cells through the MAPK signaling pathway.

Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4

  • Kim, Eun-Hye;Kim, In-Hye;Ha, Jung-Ah;Choi, Kwang-Tae;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Ginseng is known to have antistress effects. Previously, red ginseng (RG) was shown to repress stress-induced peptidyl arginine deiminase type IV (PADI4) via estrogen receptor ${\beta}$ ($ER{\beta}$) in the brain, thus inhibiting brain cell apoptosis. Moreover, tumor necrosis factor (TNF)-${\alpha}$ plays a critical role in immobilization (IMO) stress. However, the signaling pathway of RG-mediated repressesion of inflammation is not completely understood. In this study, we determined how RG modulated gene expression in stressed brain cells. Since secretion of TNF-${\alpha}$ is modulated via TNF-${\alpha}$ converting enzyme (TACE) and nuclear factor (NF)-${\kappa}B$, we examined the inflammatory pathway in stressed brain cells. Immunohistochemistry revealed that TACE was induced by IMO stress, but RG repressed TACE induction. Moreover, PADI4 siRNA repressed TACE expression compared to the mock transfected control suggesting that PADI4 was required for TACE expression. A reporter assay also revealed that $H_2O_2$ oxidative stress induced NF-${\kappa}B$ in neuroblastoma SK-N-SH cells, however, RG pretreatment repressed NF-${\kappa}B$ induction. These findings were supported by significant induction of nitric oxide and reactive oxygen species (ROS) by oxidative stress, which could be repressed by RG administration. Taken together, RG appeared to repress stress-induced PADI4 via TACE and NF-${\kappa}B$ in brain cells thus preventing production of ROS and subsequently protecting brain cells from apoptosis.