• 제목/요약/키워드: Secondary neutron

Search Result 59, Processing Time 0.15 seconds

An Assessment of the Secondary Neutron Dose in the Passive Scattering Proton Beam Facility of the National Cancer Center

  • Han, Sang-Eun;Cho, Gyuseong;Lee, Se Byeong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.801-809
    • /
    • 2017
  • The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a $^3He$ neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from $4.942{\pm}0.031mSv/Gy$ at the end of the field to $0.324{\pm}0.006mSv/Gy$ at 150 cm in axial distance.

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke;Matsumoto, Shinnosuke
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.39-47
    • /
    • 2021
  • Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

  • Lee, Chaeyeong;Lee, Sangmin;Chung, Kwangzoo;Han, Youngyih;Chung, Yong Hyun;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.162-168
    • /
    • 2016
  • Proton therapy is increasingly being actively used in the treatment of cancer. In contrast to photons, protons have the potential advantage of delivering higher doses to the cancerous tissue and lower doses to the surrounding normal tissue. However, a range shifter is needed to degrade the beam energy in order to apply the pencil beam scanning technique to tumors located close to the minimum range. The secondary neutrons are produced in the beam path including within the patient's body as a result of nuclear interactions. Therefore, unintended side effects may possibly occur. The research related to the secondary neutrons generated during proton therapy has been presented in a variety of studies worldwide, since 2007. In this study, we measured the magnitude of the secondary neutron dose depending on the location of the detector and the use of a range shifter at the beam nozzle of the proton scanning mode, which was recently installed. In addition, the production of secondary neutrons was measured and estimated as a function of the distance between the isocenter and detector. The neutron dose was measured using WENDI-II (Wide Energy Neutron Detection Instruments) and a Plastic Water phantom; a Zebra dosimeter and 4-cm-thick range shifter were also employed as a phantom. In conclusion, we need to consider the secondary neutron dose at proton scanning facilities to employ the range shifter reasonably and effectively.

Structural and component characterization of the B4C neutron conversion layer deposited by magnetron sputtering

  • Jingtao Zhu;Yang Liu;Jianrong Zhou;Zehua Yang;Hangyu Zhu;Xiaojuan Zhou;Jinhao Tan;Mingqi Cui;Zhijia Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3121-3125
    • /
    • 2023
  • Neutron conversion detectors that use 10B-enriched boron carbide are feasible alternatives to 3He-based detectors. We prepared boron carbide films at micron-scale thickness using direct-current magnetron sputtering. The structural characteristics of natural B4C films, including density, roughness, crystallization, and purity, were analyzed using grazing incidence X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and scanning electron microscopy. A beam profile test was conducted to verify the practicality of the 10B-enriched B4C neutron conversion layer. A clear profile indicated the high quality of the neutron conversion of the boron carbide layer.

Solar Cyclic Modulation of Diurnal Variation in Cosmic Ray Intensity

  • Park, Eun Ho;Jung, Jongil;Oh, Suyeon;Evenson, Paul
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.219-225
    • /
    • 2018
  • Cosmic rays are ions that move at relativistic speeds. They generate secondary cosmic rays by successive collisions with atmospheric particles, and then, the secondary particles reach the ground. The secondary particles are mainly neutrons and muons, and the neutrons are observed by the ground neutron monitor. This study compared the diurnal variation in cosmic ray intensity obtained via harmonic analysis and that obtained through the pile-up method, which was examined in a previous study. In addition, we analyzed the maximum phase of the diurnal variation using four neutron monitors with a cutoff rigidity below approximately 6 GV, located at similar longitudes to the Oulu and Rome neutron monitors. Expanding the data of solar cycles 20-24, we examined the time of the maximum cosmic ray intensity, that is, the maximum phase regarding the solar cyclic modulation. During solar cycles 20-24, the maximum phase derived by harmonic analysis showed no significant difference with that derived by the pile-up method. Thus, the pile-up method, a relatively straightforward process to analyze diurnal variation, could replace the complex harmonic analysis. In addition, the maximum phase at six neutron monitors shows the 22-year cyclic variation very clearly. The maximum phase tends to appear earlier and increase the width of the variation in solar cycles as the cutoff rigidity increases.

Design of the In-pile Plug Assembly and the Primary Shutter for the Neutron Guide System at HANARO (하나로 냉중성자 유도관 시스템을 위한 인파일 플러그 및 주개폐기의 설계)

  • Shin, Jin-Won;Cho, Young-Garp;Cho, Sang-Jin;Ryu, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1585-1589
    • /
    • 2007
  • The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the mechanical design of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  • PDF

Estimation of yield strength due to neutron irradiation in a pressure vessel of WWER-1000 reactor based on the correction of the secondary displacement model

  • Elaheh Moslemi-Mehni;Farrokh Khoshahval;Reza Pour-Imani;M.A. Amirkhani-Dehkordi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3229-3240
    • /
    • 2023
  • Due to neutron radiation, atomic displacement has a significant effect on material in nuclear reactors. A range of secondary displacement models, including the Kinchin-Pease (K-P), Lindhard, Norgett-Robinson-Torrens (NRT), and athermal recombination-corrected displacement per atom (arc-dpa) have been suggested to calculate the number of displacement per atom (dpa). As neutron elastic interaction is the main cause of displacement damage, the focus of the current study is to calculate the atomic displacement caused by the neutron elastic interaction in order to estimate the exact amount of yield strength in a WWER-1000 reactor pressure vessel. To achieve this purpose, the reactor core is simulated by MCNPX code. In addition, a program is developed to calculate the elastic radiation damage induced by the incident neutron flux (RADIX) based on different models using Fortran programming language. Also, due to non-elastic interaction, the displacement damage is calculated by the HEATR module of the NJOY code. ASME E-693-01 standard, SPECTER, NJOY codes, and other pervious findings have been used to validate RADIX results. The results showed that the RADIX(arc-dpa)/HEATR outputs have appropriate accuracy. The relative error of the calculated dpa resulting from RADIX(arc-dpa)/HEATR is about 8% and 46% less than NJOY code, respectively in the ¼ and ¾ vessel wall.

Boron Analysis in High Carbon Graphitized Steel using Neutron Autoradiography (Neutron Radiography를 이용한 고탄소흑연강에서 붕소 분석)

  • U, Gi-Do;Yang, Chang-Ho;Park, Hui-Chan;Lee, Chang-Hui;Sim, Cheol-Mu;Jang, Jin-Seong;Kim, Hyeon-Gyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1074-1079
    • /
    • 2001
  • To study the distribution of boron and the boron effect for nucleation of graphite in high carbon steel, neutron induced autoradiography method is used. High carbon steel is easy to make the graphitization by addition of boron. It is easy to analysis of boron distribution using neutron radiography with neutron fluence of $1.9$\times${\times}10^{13}/cm^2$in the boron added high carbon steel. By the neutron induced autoradiography technique, it was found that the distribution of boron depended on boron content, graphitiging temperature and time. And by the analysis of secondary ion mass spectroscopy (SIMS) and electron probe micro analysis (EPMA), boron or boride were acted at nucleation site of graphite in high carbon steel.

  • PDF

Installation of Neutron Monitor at the Jang Bogo Station in Antarctica

  • Jung, Jongil;Oh, Suyeon;Yi, Yu;Evenson, Paul;Pyle, Roger;Jee, Geonhwa;Kim, Jeong-Han;Lee, Changsup;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.345-348
    • /
    • 2016
  • In December 2015, we have installed neutron monitor at the Jang Bogo station in Antarctica. The Jang Bogo station is the second science station which is located at the coast ($74^{\circ}\;37.4^{\prime}S$, $164^{\circ}\;13.7^{\prime}E$) of Terra Nova Bay in Northern Victoria Land of Antarctica. A neutron monitor is an instrument to detect neutrons from secondary cosmic rays collided by the atmosphere. The installation of neutron monitor at Jang Bogo station is a part of transferred mission for neutron monitor at McMurdo station of USA. Among 18 tubes of 18-NM64 neutron monitor, we have completed relocation of 6 tubes and the rest will be transferred in December 2017. Currently, comparison of data from both neutron monitors is under way and there is a good agreement between the data. The neutron monitor at Jang Bogo station will be quite useful to study the space weather when the installation is completed.

Monte Carlo simulation and optimization of neutron ray shielding performance of related materials

  • Tongyan Cui;Faquan Wang;Linhan Bing;Rui Wang;Zhongjian Ma;Qingxiu Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3545-3552
    • /
    • 2024
  • Polymers have become widely used substrate materials for shielding neutron rays because of their high hydrogen content and easy processing procedures. Rare-earth materials are also being gradually adopted as neutron absorbers because of their considerable thermal neutron absorption cross-sections. This paper utilizes the FLUKA Monte Carlo simulation program to compare the shielding effects of various polymers and rare-earth oxides on neutron rays across different energy ranges. The study investigates the superior shielding materials for neutron radiation in each energy range. Subsequently, a series of materials are simulated by combining the preferred shielding materials for neutron rays in each energy range, exploring the influence of material composition and composite structure on the effectiveness of neutron ray shielding. It is revealed that the preferred material for shielding neutron rays changes for different energy ranges. For low-energy neutron rays, rare-earth oxides such as Sm2O3 and Gd2O3 demonstrate the most effective shielding, whereas for high-energy neutron rays, polyethylene (PE) provides the best shielding performance. Materials with different compositions show varying preferred structures when dealing with a 252Cf neutron source. However, in mitigating the secondary gamma rays generated during the neutron shielding process, stacked-type materials exhibit the most effective shielding performance.