• Title/Summary/Keyword: Secondary metabolite

Search Result 237, Processing Time 0.023 seconds

Evaluation of the Biological Activities of Marine Bacteria Collected from Jeju Island, Korea, and Isolation of Active Compounds from their Secondary Metabolites

  • Kim, Hyun-Soo;Zhang, Chao;Lee, Ji-Hyeok;Ko, Ju-Young;Kim, Eun-A;Kang, Nalae;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2014
  • To explore marine microorganisms with medical potential, we isolated and identified marine bacteria from floats, marine algae, animals, and sponges collected from Jeju Island, Korea. We isolated and identified 21 different strains from the marine samples by 16S rRNA analysis, cultured them in marine broth, and extracted them with ethyl acetate (EtOAc) to collect secondary metabolite fractions. Next, we evaluated their anti-oxidative and anti-inflammatory effects. Among the 21 strains, the secondary metabolite fraction of Bacillus badius had both strong antioxidant and anti-inflammatory activity, and thus was selected for further experiments. An antioxidant compound detected from the secondary metabolite fraction of B. badius was purified by preparative centrifugal partition chromatography (n-hexane:EtOAc:methanol:water, 4:6:4:6, v/v), and identified as diolmycin A2. Additionally, diolmycin A2 strongly inhibited nitric oxide production. Thus, we successfully identified a significant bioactive compound from B. badius among the bacterial strains collected from Jeju Island.

LC-MS/MS Profiling-Based Secondary Metabolite Screening of Myxococcus xanthus

  • Kim, Ji-Young;Choi, Jung-Nam;Kim, Pil;Sok, Dai-Eun;Nam, Soo-Wan;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 2009
  • Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.

Improvement of Cyclosporin A Hydroxylation in Sebekia benihana by Conjugational Transfer of Streptomyces coelicolor SCO4967, a Secondary Metabolite Regulatory Gene (Sebekia benihana에서 Streptomyces coelicolor SCO4967 유전자 도입을 통한 하이드록실 사이클로스포린 A의 생전환)

  • Kim, Hyun-Bum;Lee, Mi-Jin;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • Actinomycetes are Gram-positive soil bacteria and one of the most important industrial microorganisms due to superior biosynthetic capabilities of many valuable secondary metabolites as well as production of various valuable bioconversion enzymes. Among them are cytochrome P450 hydroxylase (CYP), which are hemoproteins encoded by a super family of genes, are universally distributed in most of the organisms from all biological kingdoms. Actinomycetes are a rich source of soluble CYP enzymes, which play critical roles in the bioactivation and detoxification of a wide variety of metabolite biosynthesis and xenobiotic transformation. Cyclosporin A (CyA), one of the most commonly-prescribed immunosuppressive drugs, was previously reported to be hydroxylated at the position of 4th N-methyl leucine by a rare actinomycetes called Sebekia benihana, leading to display different biological activity spectrum such as loss of immunosuppressive activities yet retaining hair growth-stimulating side effect. In order to improve this regio-selective CyA hydroxylation in S. benihana, previously-identified several secondary metabolite up-regulatory genes from Streptomyces coelicolor and S. avermitilis were heterologously overexpressed in S. benihana using an $ermE^*$ promoter-containing Streptomyces integrative expression vector. Among tested, SCO4967 encoding a conserved hypothetical protein significantly stimulated region-specific CyA hydroxylation in S. benihana, implying that some common regulatory systems functioning in both biosynthesis and bioconversion of secondary metabolite might be present in different actinomycetes species.

Liquid Chromatography-Mass Spectrometry-Based Chemotaxonomic Classification of Aspergillus spp. and Evaluation of the Biological Activity of Its Unique Metabolite, Neosartorin

  • Lee, Mee Youn;Park, Hye Min;Son, Gun Hee;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.932-941
    • /
    • 2013
  • This work aimed to classify Aspergillus (8 species, 28 strains) by using a secondary metabolite profile-based chemotaxonomic classification technique. Secondary metabolites were analyzed by liquid chromatography ion-trap mass spectrometry (LC-IT-MS) and multivariate statistical analysis. Most strains were generally well separated from each section. A. lentulus was discriminated from the other seven species (A. fumigatus, A. fennelliae, A. niger, A. kawachii, A. flavus, A. oryzae, and A. sojae) with partial least-squares discriminate analysis (PLS-DA) with five discriminate metabolites, including 4,6-dihydroxymellein, fumigatin, 5,8-dihydroxy-9-octadecenoic acid, cyclopiazonic acid, and neosartorin. Among them, neosartorin was identified as an A. lentulus-specific compound that showed anticancer activity, as well as antibacterial effects on Staphylococcus epidermidis. This study showed that metabolite-based chemotaxonomic classification is an effective tool for the classification of Aspergillus spp. with species-specific activity.

Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin

  • Baque, Md. Abdullahil;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • Morinda citrifolia adventitious roots were cultured in shake flasks using Murashige and Skoog medium with different types and concentrations of auxin and cytokinin. Root (fresh weight and dry weight) accumulation was enhanced at 5 $mg\;l^{-1}$ indole butyric acid (IBA) and at 7 and 9 $mg\;l^{-1}$ naphthalene acetic acid (NAA). On the other hand, 9 $mg\;l^{-1}$ NAA decreased the anthraquinone, phenolic and flavonoid contents more severely than 9 $mg\;l^{-1}$ IBA. When adventitious roots were treated with kinetin (0.1, 0.3 and 0.5 $mg\;l^{-1}$) and thidiazuron (TDZ; 0.1, 0.3 and 0.5 $mg\;l^{-1}$) in combination with 5 $mg\;l^{-1}$ IBA, fresh weight and dry weight decreased but secondary metabolite content increased. The secondary metabolite content (including 1,1-diphenyl-2-picrylhydrazyl activity) increased more in TDZ-treated than in kinetin-treated roots. Antioxidative enzymes such as catalase (CAT) and guaiacol peroxidase (G-POD), which play important roles in plant defense, also increased. A strong decrease in ascorbate peroxidase activity resulted in a high accumulation of hydrogen peroxide. This indicates that adventitious roots can grow under stress conditions with induced CAT and G-POD activities and higher accumulations of secondary metabolites. These results suggest that 5 $mg\;l^{-1}$ IBA supplementation is useful for growth and secondary metabolite production in adventitious roots of M. citrifolia.

Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling

  • Kang, Dae-Jung;Kim, Ji-Young;Choi, Jung-Nam;Liu, Kwang-Hyeon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.5-13
    • /
    • 2011
  • In this study, seven Trichoderma species (33 strains) were classified using secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) and multivariate statistical methods. T. longibrachiatum and T. virens were independently clustered based on both internal transcribed spacer (ITS) sequence and secondary metabolite analyses. T. harzianum formed three subclusters in the ITS-based phylogenetic tree and two subclusters in the metabolitebased dendrogram. In contrast, T. koningii and T. atroviride strains were mixed in one cluster in the phylogenetic tree, whereas T. koningii was grouped in a different subcluster from T. atroviride and T. hamatum in the chemotaxonomic tree. Partial least-squares discriminant analysis (PLS-DA) was applied to determine which metabolites were responsible for the clustering patterns observed for the different Trichoderma strains. The metabolites were hetelidic acid, sorbicillinol, trichodermanone C, giocladic acid, bisorbicillinol, and three unidentified compounds in the comparison of T. virens and T. longibrachiatum; harzianic acid, demethylharzianic acid, homoharzianic acid, and three unidentified compounds in T. harzianum I and II; and koninginin B, E, and D, and six unidentified compounds in T. koningii and T. atroviride. The results of this study demonstrate that secondary metabolite profiling-based chemotaxonomy has distinct advantages relative to ITS-based classification, since it identified new Trichoderma clusters that were not found using the latter approach.

Effects of Short Microwave Irradiation Time at the Seedlings Stage on the Growth and Secondary Metabolite Contents of Lettuce (Lactuca sativa L.) (유묘단계에서 단시간 마이크로웨이브 처리가 상추의 생육 및 이차대사산물 함량에 미치는 영향)

  • Yong Jae Lee;Su Yong Park;Ju Hyung Shin;Seung Yong Hahm;Gwang Ya Lee;Jong Seok Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.217-225
    • /
    • 2023
  • This experiment was conducted to investigate the effects of microwave irradiation on the growth and secondary metabolite contents of lettuce seedlings. Seedlings at three weeks after sowing were treated by a microwave oven for 0, 4, 8, and 12 seconds with 200 W. After cultivation in a close plant production system for 4 weeks, plant growth measurements and secondary metabolite analysis were performed. The results showed that the fresh and dry weights of the shoot and root, leaf area, leaf length, and the number of leaves were decreased as increasing the microwave treatment times. Chlorophyll a and b, total carotenoids were increased and total phenolics were decreased at the 12-second treatment compared to the 4-second treatment. Total flavonoid contents were decreased at the 8-second treatment compared to the control. These results suggest that the changes in the levels of secondary metabolites were caused by oxidative stress. Although there was no significant difference in secondary metabolite contents excluding total flavonoid contents on the microwave treatments compared to the control, the significant difference suggests that the microwave treatment of 200 W and 2.45 GHz may alter secondary metabolite contents of lettuce after 4 weeks.

Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces

  • Lee, Namil;Hwang, Soonkyu;Lee, Yongjae;Cho, Suhyung;Palsson, Bernhard;Cho, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.667-686
    • /
    • 2019
  • Streptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.

Synthesis of unnatural compounds by enzyme engineering

  • Morita, Hiroyuki
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.34-34
    • /
    • 2019
  • About 60% of the present drugs were developed from natural products with unique chemical diversity and biological activities. Hence, discovery of new bioactive compounds from natural products is still important for the drug development. On the other hand, breakthrough made in synthetic biology has also begun to supply us with many useful compounds through manipulation of biosynthetic gene for secondary metabolites. Theoretically, this approach can also be exploited to generate new unnatural compounds by intermixing genes from different biosynthetic pathway. Considering the potential, we are studying about bioactive compounds in natural sources, as well as the biosynthesis of natural products including engineering of the secondary metabolite enzymes to make new compounds in order to construct the methodological basis of the synthetic biology. In this symposium, engineering of secondary metabolite enzymes that are involved in the biosynthesis of plant polyketides to generate new compounds in our laboratory will be mainly introduced.

  • PDF

Change of growth and carotenoid concentration in Korean fir with varied annual temperature on Mt. Halla

  • Chung-Kwang Lee;Young-Kyu Hong;Jin-Wook Kim;Sung-Chul Kim;Jinhee Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.331-339
    • /
    • 2022
  • Deforestation and conservation of coniferous forest have been recognized as critical issues in Korea due to climate change. The main purpose of this research was to monitor changes of secondary metabolite contents and growth of Korean fir (Abies koreana) according to the temperature change in Mt. Halla. The Korean fir located at three different regions, Yeongsil, Witseoreum, and Jindallaebat, was monitored in April, July, and October from 2016 to 2018 and secondary metabolites, specifically lutein, α-carotenoid, and β-carotenoid, were analysed with high performance liquid chromatography. The results showed that average concentrations of lutein, α-carotenoid, and β-carotenoid were 0.82 - 23.30, 0.02 - 2.01, and 0.11 - 2.84 ㎍·g-1 and the highest concentration of secondary metabolite was observed in October compared to April and July. The average length and width of Korean fir in the three regions were 11.84 - 20.70 and 1.78 - 2.41 mm from 2016 - 2018. A correlation analysis showed that the concentrations of all three secondary metabolites were negatively correlated with temperature and a significant difference was observed between temperature and lutein concentration in Korean fir. Overall, growth and production of secondary metabolites in Korean fir highly depended on the temperature, and global warming thus might have an adverse effect on the growth and physiological changes of Korean fir in Mt. Halla.