• Title/Summary/Keyword: Secondary angle

Search Result 399, Processing Time 0.022 seconds

Effect of Coordinative Locomotor Training on Spine Appearance and Quality of Life in Patients with Idiopathic Scoliosis: Single Subject Study (협응이동훈련이 특발성 측만증 환자의 척추 외형과 삶의 질에 미치는 효과 : 단일사례연구)

  • Kim, Jin-Cheol;Oh, Eun-Ju
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.89-97
    • /
    • 2021
  • PURPOSE: This study examined the effects of coordinative locomotor training on the spine appearance and quality of life of patients with idiopathic scoliosis. METHODS: This study included two patients with idiopathic scoliosis: one with a thoracic and lumbar type scoliosis and the other with thoracic type scoliosis. The study design was a single case study (A-B-A'), with a baseline-intervention/phase-post-intervention. The baseline (A) was designed and measured five times, intervention phase (B) ten times, and post-intervention (A') five times. The coordinative locomotor training program was divided into 10 minutes of warm-up exercise, 30 minutes of the main exercise, and 10 minutes of the finishing exercise, for 50 minutes each time. The primary outcome measurements were measured using the Cobb's angle, Adam's test, and Gait view pro 2.0 to determine the changes in the spine appearance. The secondary outcome measurements were compared before and after using the SRS-22 questionnaire to determine the quality of life of the scoliosis patients. A statistical test analyzed the mean and standard deviation, and the rate of change was presented by a visual analysis method using descriptive statistics and graphs. RESULTS: The findings showed that the spine appearance and quality of life of the two subjects were improved compared to the baseline measurements during the intervention phase, and the improved state was maintained during the post-intervention period. CONCLUSION: These findings indicate that coordinative locomotor training may help improve the spine appearance and quality of life of patients with idiopathic scoliosis.

Use of Orthopedic Manual Physical Therapy and Home Self-Therapeutic Exercise to Manage Myofascial Temporomandibular Disorder Accompanied by Headache: Case Study (두통을 동반한 근막성 턱관절 장애 환자의 관리를 위한 정형도수치료기법과 가정 자가-치료적 운동의 적용: 사례연구)

  • In-su Lee;Suhn-yeop Kim
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.1
    • /
    • pp.81-93
    • /
    • 2023
  • Purpose: The current case study focuses on identifying the effects of manual therapy and home self-therapeutic exercise including on mouth opening and pain relief in patients with continuous neck pain with myofascial temporomandibular disorders (TMDs) accompanied by headache induced by masticatory myalgia Subjects: The study participant was a 27-year-old woman who was treated a year ago for pain related to TMDs accompanied by a headache. Methods: Manual therapy of the cervical spine with upper cervical spine posterior-to-anterior mobilization (C1~C2), upper cervical spine flexion mobilization (C0~C2), upper cervical spine lateral flexion mobilization (C0~C1), upper cervical spine thrust manual therapy (C1~C2) and manual therapy of the temporomandibular joint and muscles with transverse medial accessory temporomandibular joint mobilization, manual therapies for the temporal, the masseter, and medial pterygoid muscles were performed twice a week for about 30 minutes for 4 weeks. This protocol included 3 sessions in total. The home self-therapeutic exercise was to be performed two to three times a day. Results: The values more improved MMO increased to 41.4 mm, left masseter muscle PPT to 2.9 kgf/cm2, right masseter muscle PPT to 3.1 kgf/cm2, KHIT-6 to 46 points, neck pain intensity (by NRS) to 2 points, headache frequency to per weeks, cervical kyphotic angle to -8.06%, and GCPS to grade 1 (low-intensity pain without pain-related disorder). Conclusion: Manual therapy and home self-therapeutic exercise can be helpful for mouth opening and pain relief in patients with myofascial TMDs accompanied by secondary headaches induced by masticatory myalgia.

  • PDF

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Development of Intermittent Coating Process Using Roll-to-roll Slot-die Coater (롤투롤 슬롯 다이 코터를 이용한 간헐 코팅 공정 개발)

  • Mose Jung;Gieun Kim;Jeongpil Na;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.32-37
    • /
    • 2023
  • For the potential applications in large-area OLED lightings, hydrogen fuel cells, and secondary batteries, we have performed an intermittent coating of high-viscosity polydimethylsiloxane using roll-to-roll slot die coater. During intermittent coating, dead zones inevitably appear where the thickness of PDMS patch films becomes non-uniform, especially at the leading/trailing edge. To reduce it, we have coated the PDMS patches by varying the process parameters such as the installation angle of the slot die head, coating speed, and patch interval. It is observed that the PDMS solution flows down and thus the thickness profile is non-uniform for horizonal intermittent coating, whereas the PDMS solution remaining on the head lip causes an increase in the PDMS thickness at the leading/trailing edges for vertical intermittent coating when the coating velocity is low. As the coating speed increases, however, the dead zone is shown to be reduced. It is addressed that the overall dead zone (the dead zone at the leading edge + the dead zone at the trailing edge) is smaller with horizontal intermittent coating than with vertical intermittent coating.

  • PDF

Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing (내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지)

  • Jae Ho Choi;Young Min Byun;Hyeong Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF

Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum

  • Ning Jiao;Xing Wan;Jianwen Ding;Sai Zhang;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.131-143
    • /
    • 2024
  • Shield tunneling construction commonly crosses underground pipelines in urban areas, resulting in soil loss and followed deformation of grounds and pipelines nearby, which may threaten the safe operation of shield tunneling. This paper investigated the pipeline deformation caused by double curved shield tunnels in soil-rock composite stratum in Nanjing, China. The stratum settlement equation was modified to consider the double shield tunneling. Moreover, a three dimensional finite element model was established to explore the effects of hard-layer ratio, tunnel curvature radius, pipeline buried depth and other influencing factors. The results indicate the subsequent shield tunnel would cause secondary disturbance to the soil around the preceding tunnel, resulting in increased pipeline and ground surface settlement above the preceding tunnel. The settlement and stress of the pipeline increased gradually as buried depth of the pipeline increased or the hard-layer ratio (the ratio of hard-rock layer thickness to shield tunnel diameter within the range of the tunnel face) decreased. The modified settlement calculation equation was consistent with the measured data, which can be applied to the settlement calculation of ground surface and pipeline settlement. The modified coefficients a and b ranged from 0.45 to 0.95 and 0.90 to 1.25, respectively. Moreover, the hard-layer ratio had the most significant influence on the pipeline settlement, but the tunnel curvature radius and the included angle between pipeline and tunnel axis played a dominant role in the scope of the pipeline settlement deformation.

A CLINICAL STUDY OF THE NASAL MORPHOLOGIC CHANGES FOLLOWING LEFORT I OSTEOTOMY (상악골 수평골절단술 후 비외형 변화에 관한 임상적 연구)

  • Bae, Jun-Soo;You, Jun-Young;Lyoo, Jong-Ho;Kim, Yong-Kwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.324-329
    • /
    • 1999
  • The facial esthetics are much affected by nasal changes due to especially its central position in relation to facial outline and so appropriately evaluated should be the functional and esthetic aspects of the nose associated with the facial appearance. Generally, a maxillary surgical movement is known to induce the changes of nasolabial morphology secondary to the skeletal repositioning accompanied by muscular retraction. These changes can be desirable or undesirable to individuals according to the direction and amount of maxillary repositioning. We investigated the surgical changes of bony maxilla and its effects to nasal morphology through the analysis of the lateral cephalogram in the Le Fort I osteotomy. Subjects were 10 patients(male 2, female 8, mean age 22.3 years) and cephalograms were obtained 2 weeks before surgery(T1) and 6 months after surgery(T2). The surgical maxillary movement was identified through the horizontal and vertical repositioning of point A. Soft-tissue analysis of the nasal profile was performed employing two angles: nasal tip projection(NTP), columellar angle(CA). Also, alar base width(ABW) was assessed directly on the patients with a slide gauge. The results were as follows; 1. Both anterior and superior movement above 2mm of maxilla rotated up nasal tip above 1mm. Either anterior or superior movement above 2mm of maxilla made prediction of the amount & direction of NTP changes difficult. Especially, a correlation between horizontal movement of maxilla and NTP rotated-up was P<0.01. 2. Both much highly anterior and superior movement of maxilla is accompanied by more CA increase than either highly. Especially, the correlation between horizontal movement of maxilla and CA change was P<0.05. 3. Anterior and/or superior movement of maxilla was accompanied by the unpredictable ABW widening. 4. The amount of changes of NTP, CA, and ABW is not in direct proportion to amout of anterior and/or superior movement of maxilla. 5. Nasal morphologic changes following Le Fort I osteotomy are affacted by not merely bony repositioning but other multiple factors.

  • PDF

Electrical Resistivity-Measurements for the Detection of Fracture Zones in the Woraksan Granitic-Bodies (월악산화강암체의 파쇄대규명을 위한 전기비저항탐사)

  • 김지수;권일룡
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.113-126
    • /
    • 1997
  • Electrical resistivity methods of dipole - dipole array profiling and Schiumberger array sounding were tested on a segment of the Woraksan granitic batholith for the research into the imaging of irregular attitudes of fracture zones in the crystaaline rock in terms of processing and interpretation schemes. By the dipole - dipole array method, inhomogeneities such as small scale of fracture zones were properly delineated down at some depth even within hard rock environment. Fracture zones were interpreted to be at the boundaries between the high amplitude zone and very low amplitude zone in the resistivity plot and they were also successfully outlined in two - dimensional layer and pseudo - three - dimensional volume constructed by the incorporation of vertical sounding data. The surface location of the fracture zones was correlated by the zero - crossing point in the VLF(very low frequency) electromagnetic data. Pseudo - three - dimensional attitudes of fracture zones were efficiently illuminated by optimum projection angle. The mean of bulk resistivity for the Woraksan granite and the near fracture zones is estimated to be approximately of 4,000 ohm - m which is much higher than the value of 700 ohm - m for the Rwachunri limesilicate environment. This difference is due to both the rock type, i.e., biotite granite vs limesilicate, and the occurrence of secondary openings of fold and fault associated with the intrusion of granite. In this study statistical analyses on the resistivity color plot were performed in terms of three representative statistical moments, i.e., standard deviation, skewness, and kurtosis. The fracture zones in the standard deviation plot were characterized by the higher value, compared to the value of homogeneous portion. The upper boundary of the high resistivity zone was also successfully delineated in the skewness and kurtosis plots.

  • PDF

An analysis of Factorial structure of Kinematic variables in Bowling (볼링의 운동학적 분석과 주요인 구조분석)

  • Lee, Kyung-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.381-392
    • /
    • 2002
  • This study attempted to indentify changeability of the factorial structure of kinematic analysis in bowling. Subjects of group composed of three groups : Higher bowers who are national representative bowers with 200 average point and one pro-bowler. Middle bowlers who are three common persons with 170 average points. Lower bowler who are three common persons with 150 average points. Motion analysis on throw motion in three groups respectively has been made through three-dimension cinematography using DLT method. Two high-speed video camera at operating 180 and 60 frame per secondary. T-test factorial structure analysis has been used to define variable relations. It was concluded that : 1. The difference of x1, x2, x4, x8, x9, x11, x12, x13 where significant between two group. 2. The difference of number of spin and angle of the back-hand where statistically significant between two group(p<.001, p<.05) 3. The correlation over r=.5 between the kinematic data x1, x2, x3, x9, x10, x11. In the rotation loading matrix Factor 1 was x1, x2, x9, x10 and Factor 2 relates to x3, x11. 4. In order to obtain the factor score as follow as ; Factor 1 = (0.248)X1 + (0.265)X2 + (-0.074)X3 + (0.259)X9 + (0.259)X10 + (-0.025)X11 Factor 2=(-0.016)X1 + (-0.055)X2 + (0.84)X3 + (-0.013)X9 + (-0.007)X10 + (0.553)X11.

formation Mechanisms of 1:1 Clay Minerals by Biotite Weathering In a Granitic Gneiss (흑운모의 풍화작용에 의한 1:1 점토광물의 형성 메커니즘)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.221-230
    • /
    • 2002
  • Weathering of biotite shows a biotite-vermiculite-kaolinite sequence at the early stage, but presents biotite-kaolinite sequence without a significant intermediate phase (vermiculite) at the late stage from the weathering profile of the granitic gneiss. Secondary 1:1 phyllosilicates are kaolinite and halloysite which show different weathering textures originated by a different formation mechanism. Kaolinitization began from the edges of biotite and propagated toward the interior of grain along a multilayered front. $10 \AA$ layers of biotite are interleaving with $7\AA$ layers of kaolinite and c-axis of two phases is consistent. Kaolinite pseudomorph of biotite is isovolumetric, compared to the biotite boundary and includes many band-like porosities parallel to the cleavage. Platy kaolinite formed by 1:1 layer fur layer replacement of biotite. Halloysitization proceeded outward from the grain edges which were foliated as fine flakes and bent at the right angle for cleavage Halloysites were extensively fanning out and greatly increased the volume of grain. This indicated that halloysite tubes were formed by epitaxial overgrowth on the surface of biotite with import of Si and Al from the external solution by dissolution of plagioclase. These halloysites have abnormally high Fe content ( ~11%).