• Title/Summary/Keyword: Secondary angle

Search Result 398, Processing Time 0.028 seconds

A Study on Horizontal Displacement Following Ability of Welded and Non-welded Building Hardware (용접형과 무용접형 하지철물의 수평변위 추종능력에 관한 연구)

  • Lee, Don-Woo;Kwak, Eui-Shin;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.75-82
    • /
    • 2016
  • Building hardware joints are welded in most cases, which have risks of fire and explosion. Besides, the secondary damage of the destruction of the welded parts can be caused by the horizontal displacement of the structure due to earthquake or wind load. This paper compared the horizontal displacement following abilities of welded building hardware and non-welded building hardware. To do this, We conducted actual formation shake table test, and checked on the horizontal displacement following ability of structure by comparing their responses to earthquake load. We made the 2m-high framework to examine the responses of the actually constructed building hardwares, and analyzed the displacement responses of the welded-typed, non-welded-typed, and cruciform bracket building hardwares. We conducted the test by increasing acceleration rate until displacement reached 40mm corresponding to allowable relative story displacement II. The result of the test showed that the building hardware using welding work made cracking and breakage on welded connections of welded building hardware, but non-welded building hardware with no use of welding work and cruciform bracket building hardware make no problem, and that non-welded building hardware is superior to that of the welded building hardware in the horizontal displacement following ability due to earthquake or wind load.

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

Study of PSII-treated PMMA, PHEMA, and PHPMA ; Investigation of Their Surface Stabilities

  • Hyuneui Lim;Lee, Yeonhee;Seunghee Han;Jeonghee Cho;Moojin suh;Kem, Kang-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.204-204
    • /
    • 1999
  • The plasma source ion implantation(PSII) technique which is a method using high negative voltage pulse in plasma system has the potential to change the surface properties of polymer. PSII technique increase the surface free energy by introducing polar functional groups on the surface so that it improves reactivity, hydrophilicity, adhension, biocompatability, etc. However, the mobility of polymer chains enables the modified surface layers to adapt their composition to interfacial force. This hydrophobic recovery interrupts the stability of modified surfaces to keep for the long time. In this study, poly(methyl methacrylate)(PMMA), poly(2-hydroxyethyl methacrylate)(PHEMA), and polu(2-hydroxypropyl methacylate)(PHPMA) for contact lens application, were modified to improve the wettability with PSII technique and were investigated the surface stabilities. Polymer film was prepared with solution casting(3 wt.% solution) and was annealed at 11$0^{\circ}C$ under vacuum oven to remove solvent completely and to eliminate physical ageing. The thickness of the film measured by scanning electron microscopy (SEM) and surface profilometer was about 10${\mu}{\textrm}{m}$. Polymers were treated with different kinds of gases, pulse frequency, pulse with, pulse voltage, and treatment time. Even though PMMA, PHEMA, and PHPMA have similar repeat unit structure, the optimal treatment conditions and the tendency to hydrophobic recovery were different. PHPMA, more hydrophilic polymer than PMMA and PHEMA showd better wettability and stability after mild treatment. Surface tensions were obtained by water and diiodomethane contact angle measurements to monitor the relation between hydrophobic recovery and polymer structure. Different ion species in plasma change the polar component and dispersion component of polymer surface. For better wettability surface, the increase of polar component was a dominant factor. We also characterized modified polymer surfaces using x-ray photoelectron spectroscopy(XPS), secondary ion mass spectrometry(SIMS), Fourier Transform infrared spectroscopy(FT-IR), and SEM.

  • PDF

Magnetic Sector SIMS의 Sample Holder 위치에 따르는 RSF (Relative Sensitivity Factor) 변화 검증

  • 홍성윤;이종필;홍태은;윤명노;민경열;이순영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.192-192
    • /
    • 1999
  • SIMS(Secondary Ion Mass Spectrometry)는 다른 표면 분석장비와 비교하여^g , pp m,^g , pp b 단위의 미량분석이 가능한 장비로서, 특히 depth Profiling을 위한 dynamic SIMS는 Mass Spectrometer의 종류에 따라 Quadrupole SIMS (Q-SIMS)와, Magnetic Sector SIMS (M-SIMS)로 분류된다. 한편, Q-SIMS와 달리 M-SIMS의 경우, Transmission을 높여 주기 위해 Sample Holder에 수 keV의 bias를 걸어 주는데, 이로 인하여 분석 원소에 대한 Sensitivity가 향상되어 지는 반면, RSF의 변화와 같은 분석상의 Artifact가 발생하게 된다. 일반적으로 Q-SIMS의 경우에는 RSF의 RSD(Relative Standard Deviation)가 1%이내에서 보고되고 있지만 M-SIMS에 있어서는 이러한 Deviation이 M-SIMS보다 크게 나타난다. 이 차이는 주로 Sample Holder와 Immersion Lens 사이에 형성되는 Magnetic Field의 왜곡과 Spectrometer의 문제로부터 발생한다. 본 논문에서는 Sample Holder의 종류 및 holder so window 위치에 따라 RSF의 차이를 측정하고 그 data를 RS/1 통계 Package를 이용하여 계량적으로 검증하였으며, 그 차이의 원인과 대책을 제시하고자 한다. 실험에 사용된 Sample은 Si(100) p-type Wafer에 Boron을 이온 주입하여 제작하였다. 이온 주입 장비는 Varian E-500HP이며, 5.0E13 ions/cm2의 dose양을 80keV의 Energy로 각각 7도와 22도의 Tilt와 Twist Angle로 이온 주입을 하였다. SIMS분석에 사용된 Sample Holder는 각각 3 Hole, 9 Hole Type HOlder이며, 분석은 Cameca IMS-6f를 사용하여 B에 대한 Matrix Peak으로 28Si++를 얻었다. 실험 결과 3 Hole Type Sample Holder의 경우 RSF의 RSD는 5.84%, 9Hle Type Sample Holder의 경우는 14.3%로 나타났으나 분석 Window의 위치에 따르는 Grouping을 실시한 결과, 3 Hole Type Sample Holder의 경우 1.2%, 9Hole Type Sample Holder의 경우 9.8%로 RSF의 변화가 감소하였다. 이러한 Deviation은 Sample Holder를 Mount시킬 때 세 개의 Screw를 이용하여 Immersion Lens와의 평형을 잡아주기 때문에 발생하며, 이 Munting을 정확히 해줌으로써 RSF의 변화를 줄일 수 있으나, 실제로 완벽한 Mounting이 불가능하기 때문에 RSF를 일정하게 하기 위해서는 Sample Holder so Window의 취치를 일정하게 설정한 후 분석을 실시해야 한다고 판단된다.

  • PDF

Effect of Inclined Jet on Heat/Mass Transfer for Impingement/Effusion Cooling System (경사제트에 따른 충돌제트/유출냉각에서 열/물질전달 특성)

  • Hong, Sung-Kook;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.283-289
    • /
    • 2008
  • An experimental investigation was conducted to investigate the heat/mass transfer for impingement/effusion cooling system with inclined jet. Jets with inclined angle of 60 are applied to impingement/effusion cooling. At the jet Reynolds number of 10,000, the experiments were carried out for blowing ratios ranging from 0.0 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result indicates that the inclined jet causes the non-uniform and low heat/mass transfer compared to the vertical jet. At stagnation region, the peak position is shifted from the geometrical center of injection hole due to Coanda effect and its level is higher than that of vertical jet due to increase in turbulence intensity by steep velocity gradient near the stagnation region. Further, the secondary peak region disappears because the interaction between adjacent wall jets weakens. When the initial crossflow occurs, the distorted heat/mass transfer pattern appears. As the blowing ratio (crossflow rate) increases, the heat/mass transfer distributions become similar to those of the vertical jet. This is because the effect of crossflow is dominant compared to that of inclined jet under high blowing ratio $(M{\geq}1.0)$. At low blowing ratio $(M{\leq}0.5)$, averaged Sh value is 10% lower than that of vertical jet, whereas its value at high blowing ratio $(M{\geq}1.0)$ is similar to that of vertical jet.

Biodiversity of Hawaiian Peyssonneliales (Rhodophyta): Sonderophycus copusii sp. nov., a new species from the Northwestern Hawaiian Islands

  • Sherwood, Alison R.;Paiano, Monica O.;Spalding, Heather L.;Kosaki, Randall K.
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.145-155
    • /
    • 2020
  • Specimens of red algae corresponding to the peyssonnelioid genus Sonderophycus were collected at Kure Atoll, Hawai'i, at a depth range of 88-94 m depth during mesophotic surveys of the Papahānaumokuākea Marine National Monument, Hawaiian Islands, and were analyzed using morphological and molecular approaches. Analyses of mitochondrial cytochrome oxidase subunit 1 and chloroplast rbcL DNA sequences demonstrated that the Hawaiian specimens were identical to one another yet distinct from the three other species currently recognized within the genus (S. capensis [Montagne] M. J. Wynne, S. coriaceus [Womersley & Sinkora] M. J. Wynne, and S. fervens Dixon), as well as the likely congener, Peyssonnelia caulifera Okamura, and are proposed here as a new species: Sonderophycus copusii A. R. Sherwood. Sonderophycus copusii is morphologically distinct from other members of the genus by the following combination of characters: the presence of occasional secondary perithallial growth, emergence of rhizoids from the hypobasal cuticle at a strongly acute angle, a lack of horizontally directed filaments in the lower perithallus, and the lack of a stipe. This is the first record of the genus Sonderophycus in the Hawaiian Islands. Sonderophycus copusii was documented as a dominant member of the algal community at Kure Atoll, and thus may play a significant ecological role in the deep-water benthic community of Kure Atoll, along the lines of reports of deep water peyssonnelioid beds in the Mediterranean, Red Sea, and Caribbean. This study further highlights the unexplored diversity of the Peyssonneliales in Hawai'i, and emphasizes more generally the degree of as yet undiscovered biodiversity of algae at mesophotic depths.

Process of Hairpin Vortex Packet Generation in Channel Flows (채널 유동 내에서 헤어핀 보텍스 패킷의 형성 과정)

  • Kim, Kyoung-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.839-847
    • /
    • 2012
  • Numerical simulations for channel flows with $Re_{\tau}$ = 180, 395 and 590 have been performed to investigate the hairpin packet formation process in wall-bounded turbulent flows. Using direct numerical simulation databases, the initial flow fields are given by the conditionally averaged flow field with the second quadrant event specified at the buffer layer. By tracking the initial vortex development, the change in the initial vortex to an ${\Omega}$-shaped vortex and th generation of a secondary hairpin vortex were found to occur with time scales based on the wall units. In addition, at the time when the initial vortex has grown to the channel center, the inclination angle of the hairpin vortex packet is approximately $12{\sim}14^{\circ}$, which is similar for all three Reynolds numbers. Finally, numerical simulations of the evolution of two adjacent hairpin vortices have been performed to examine the interaction between the adjacent vortex packets.

SIMS Study on the Diffusion of Al in Si and Si QD Layer by Heat Treatment

  • Jang, Jong Shik;Kang, Hee Jae;Kim, An Soon;Baek, Hyun Jeong;Kim, Tae Woon;Hong, Songwoung;Kim, Kyung Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.188.1-188.1
    • /
    • 2014
  • Aluminum is widely used as a material for electrode on silicon based devices. Especially, aluminum films are used as backside and front-side electrodes in silicon quantum dot (QD) solar cells. In this point, the diffusion of aluminum is very important for the enhancement of power conversion efficiency by improvement of contact property. Aluminum was deposited on a Si (100) wafer and a Si QD layer by ion beam sputter system with a DC ion gun. The Si QD layer was fabricated by $1100^{\circ}C$ annealing of the $SiO_2/SiO_1$ multilayer film grown by ion beam sputtering deposition. Cs ion beam with a low energy and a grazing incidence angle was used in SIMS depth profiling analysis to obtain high depth resolution. Diffusion behavior of aluminum in the Al/Si and Al/Si QD interfaces was investigated by secondary ion mass spectrometry (SIMS) as a function of heat treatment temperature. It was found that aluminum is diffused into Si substrate at $450^{\circ}C$. In this presentation, the effect of heat treatment temperature and Si nitride diffusion barrier on the diffusion of Al will be discussed.

  • PDF

Evaluation of Reduction in Reflection Sound bound from a Shaped Noise Barrier Panel (형상 방음벽 패널의 반사음 저감효과 평가)

  • Lee, Jaiyeop;Kim, Ilho
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.19-24
    • /
    • 2015
  • PURPOSES : The noise, which is typically generated by fast moving vehicles, can be intercepted by installing a noise barrier with a soundproof panel. However, reflections from the panels cause secondary noise, and hence lower the effectiveness of the panels. In this study, the reduction of reflection noise by considering the shape, especially zigzag one, of the soundproof panel have been evaluated. METHODS : The simulation model used in this study was Nord2000, which simulates real-road situations effectively. Based on the simulation results, the joining angle of $133^{\circ}$ with the pattern width (a) equal to 2 m and the projection height (b) equal to 0.5 m was adapted in the zigzag shape as the best profit designing factors. RESULTS: The measuring results at middle height, 15 m showed reduction at all points except the point with average -1.6 dB. At a greater height of 30 m, 2 points showed reduction. A real-sized facility was constructed to investigate the reflected sound from a zigzag shaped panel up to the height of 5 m. CONCLUSIONS: The reduction effects were detected in all the receive points in the range of 2-6 m distances and 1-5 m heights comparing the plane panel. Compared to plane panel, the noises are reduced at an average of 2.4 dBA.

Improvement of Depth Profiling Analysis in $Hf_xO_y/Al_xO_y/Hf_xO_y$ structure with Sub 10 nm by Using Low Energy SIMS

  • Lee, Jong-Pil;Park, Sang-Won;Choe, Geun-Yeong;Park, Yun-Baek;Kim, Ho-Jeong;Kim, Chang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.162-162
    • /
    • 2012
  • Sub 100 nm의 Complementary Metal-Oxide-Semiconductor (CMOS) 소자를 구동하기 위해서는 2.0 nm 이하의 $SiO_2$ oxide에 해당하는 전기적 특성이 요구된다. 그러나 2.0 nm 이하의 $SiO_2$에서는 누설 전류가 너무 크기 때문에 이를 대체하기 위해서 유전 상수 (dielectric permittivity)가 높은 $HfO_2$ (${\varepsilon}=25$), $Al_2O_3$, $HfO_2/Al_2O_3$ laminate 등의 high-k dielectric 물질들이 연구되고 있다[1]. High-k dielectric 물질의 전기적 특성은 박막 조성, 두께 및 전극과의 계면에 생성되는 계면 층이나 불순물(Impurity) 거동에 크게 의존하므로 High-k dielectric/전극(Metal or Si) 구조에서 조성 및 불순물의 거동에 대한 정확한 평가가 주요 쟁점으로 부각되고 있다. 이를 평가하기 위해 일반적으로 $Ar^+$ ion에 의한 depth profiling 분석이 진행되나 Oxygen 원자의 선택적 식각에 기인된 분석 깊이 분해능(Depth Resolution) 왜곡으로 계면 층의 형성이나 불순물의 거동을 정확하게 평가할 수 없다. 이러한 예로는 $Ta_2O_5$$SrBi_2Ta_2O_9$와 같은 다 성분 계 산화막에 $Ar^+$ ion 주사 시 발생하는 선택적인 식각(Preferential Sputtering) 때문에 박막의 실제 조성 및 거동을 평가하는 것은 어렵다고 보고된 바 있다[2,3]. 본 연구에서는 $90{\AA}$인 적층 $Hf_xO_y/Al_xO_y/Hf_xO_y$ 구조에서의 불순물 거동 분석 능력 확보 상 주요 인자인 깊이 분해능 개선을 Secondary Ion Mass Spectroscopy(SIMS)의 primary ion 종, impact energy 및 주사 각도를 변화시켜 ~1 nm 수준까지 구현하였다. 이러한 분석 깊이 분해능의 개선은 Low Impact Energy, 입사 이온의 glancing angle 및 Cluster ion 적용에 의존하며 이들 요인의 효과에 대해 비교/고찰하고자 한다.

  • PDF