• Title/Summary/Keyword: Secondary Zone

Search Result 297, Processing Time 0.019 seconds

An Experimental Study on the Combustion Characteristics of a Low NOx Burner Using Reburning Technology

  • Ahn, Koon-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Ho-Keun;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.950-958
    • /
    • 2002
  • The combustion characteristics of a low NOx burner using reburning technology have been experimentally studied. The return burner usually has three distinct reaction zones which include the primary combustion zone, the reburn zone and the burnout zone by provided secondary air. NOx is mainly produced in a primary combustion zone and a certain portion of NOx can be converted to nitrogen in the rebury zone. In the burnout zone, the unburned mixtures are completely oxidated by supplying secondary air. Liquefied Petroleum Gas (LPG) was used as main and reburn fuels. The experimental parameters investigated involve the main/reburn fuel ratio, the primary/secondary air ratio, and the injection location of rebury fuel and secondary air. When the amount of return fuel reaches to the 20-30% of the total fuel used, the overall NO reduction of 50% is achieved. The secondary air is injected by two different ways including vertical and parallel injection. The injector of secondary air is located at the downstream region of furnace for a vertical-injection mode, which is also placed at the inlet primary-air injection region for a parallel-injection mode. In case of the vertical injection of the secondary air flow, the NOx formation of stoichiometric condition at a primary combustion zone is nearly independent of the rebury conditions (locations, fuel/air ratios) while the NOx emission of the fuel-lean condition is considerably influenced by the reburn conditions. In case of the parallel injection of the secondary air, the NOx emission is sensitive to the air ratio rather than the fuel ratio and the reburning process often coupled with the multiple air-staging and fuel-staging combustion processes.

Energy Consumption Evaluation in Pumping System with Different Building Characteristics (건물 특성에 따른 냉수 순환 펌핑 시스템 별 에너지 소모량 분석)

  • Shin, Dong-Shin;Park, Sung-Bin;Jun, Tae-Ik;Ma, Kang-Il;Kim, Tae-Hong;Lee, Sung-Goo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.242-247
    • /
    • 2016
  • This study analyzed the energy consumption of a building pump system that was originally equipped with a primary-secondary zone pump system. Using the HYSYS program the energy consumption of the primary pump system was compared with the primary-secondary zone pump system. The primary-secondary zone pump system consumes less energy than the originally designed primary pump system. When the distance between the machine room and each building is assumed to be equal, the primary pump system can be more efficient than the primary-secondary zone pump system with decreasing the distance. When the distance is 120 m, the primary system consumes less total annual energy than the primary-secondary zone pump system and saves 2,773 kWh. The suggested energy evaluation program can be useful if the designer seeks a more efficient pump system.

An Experimental Study on the NOx Formation of Fuel Staged Combustor (연료다단 연소기의 NOx 발생특성에 관한 실험적 연구)

  • 정진도;안국영;한지웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.73-79
    • /
    • 2003
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 ㎿) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

The experimental study on the NOx formation of fuel staged combustor (연료다단 연소기의 NOx 발생특성에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.163-171
    • /
    • 2001
  • The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot Dame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Petroleum Gas(LPG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, primary/secondary air ratio, primary swirl intensity and secondary swirl intensity for reducing NOx emission. The test demonstrated that NOx emission can be reduced by ${>}$70% in accordance with operating conditions.

  • PDF

The change of recirculation zone with the inlet angle of secondary air in an incinerator (2차 공기 주입각도에 따른 소각로 내부의 재순환 영역 변화)

  • Kim, Sung-Joon;Park, Min-Ju;Chun, Bong Jun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.55-62
    • /
    • 2000
  • The purpose of this research is to find out how the inlet angle of secondary air affects the formation of recirculation zone inside a small incinerator. A commercial code, PHOENICS, is used to simulate the flow field of an incinerator. The computational grid system is constructed by Multi-Block technique. Numerical experiments are done with the five different angles of secondary air inlet. The formation of recirculation zone is evaluated by checking velocity fields. The computational results show that recirculation zone is clearly formed from 60 degree of inlet angle and the zone of recirculation is widen as angle of recirculation is increased to $75^{\circ}$.

  • PDF

An Experimental Study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Chung, Jin-Do;Han, Ji-Woong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.389-394
    • /
    • 2004
  • An experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is a act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as a primary and secondary fuels. This study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do;Park, Kyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

Morphological Parameters of the Sludge Flocs in a Long Rectangular Secondary Settling Tank (장방형 침전지에서 길이에 따른 슬러지 floc의 형태에 관한 연구)

  • Kim, Youngchul;Lee, Jin-Woo;Kang, Min-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.468-474
    • /
    • 2006
  • In the secondary settling tanks, three different types of settling phenomena occurs; i.e., zone settling for sludge thickening in the bottom part of settling tank, and discrete and flocculent settling for clarification in the upper part. In this paper, morphological parameters of the floc in sludge blanket layers along the length of a long rectangular tank were investigated. The plant used for this study had a serious bulking problem caused by Microthrix parvicella. Floc size decreased as the surface area of settling tank increases, which indicates that in the secondary settling tank where zone settling believed to be predominant, free or flocculent type of settling contributes to floc size distributions. Large floc particles deposit in the front zone of settling tank, but small and loose flocs mostly in the zone near its outlet. On the other hand, filament length contained in one gram of sludge blanket solid increases along the flow direction. Large flocs with less filaments settle faster, but small flocs having more filaments result in poor settling. These results support function of microorganism selection occurring in secondary settling tank. In addition, designing a long rectangluar settling tank with double hoppers might be one of the ways of bulking control, but this idea has to be verified with a further study.

Effect of Secondary Air Injection on Emission from Sludge Incineration in a Batch-type Internally Cycloned Circulating Fluidized Bed Combustor (배치형 내부 사이클론식 순환유동층 연소로내 2차 공기 주입에 의한 슬러지 소각 유해 배가스 저감효과)

  • Jang, Seuk-Don;Shin, Dong-Hoon;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.16-22
    • /
    • 2002
  • Combustion performance of an internally cycloned circulating fluidized bed for paper sludge was discussed through a series of batch type experiments. Operation parameters such as water content, feeding mass of sludge and secondary air injection rate were varied to find out the effect on the combustion performance, which was examined with carbon conversion rate and pollutant emission such as CO and NOx. A conventional solid fuel reaction was observed in the experiments of varying water content and feeding mass of the sludge, which is characterized with kinetic limited reaction zone, diffusion limited reaction zone and transition zone. Secondary air injection with swirl enhances the mixing of the gas phase as well as the solid phase, and improves combustion efficiency accompanied with higher carbon conversion rate and lower pollutant emission rate.

  • PDF

Evolution of Solidification Structures of Al-Si Alloys in a Vertical Centrifugal Casting (Al-Si합금의 수직원심주조시 응고조직의 형성)

  • Chang, Sung-Rak;Huh, Seung-Ho;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.20 no.3
    • /
    • pp.197-207
    • /
    • 2000
  • Al-Si alloys were solidified in a rotating cylindrical mold by a vertical centrifugal casting process. Under a certain casting condition, there are four distinct zones such as the chill zone, the primary fine columnar zone, the equiaxed zone, and the secondary coarse columnar zone from the mold wall. The columnar-equiaxed transition (CET) and the equiaxed-columnar transition (ECT) were measured as functions of solute content, flow rate (mold velocity), pouring temperature and mold temperature. Within the critical value of solute content, as the flow rate increases, the columnar-equiaxed transition were found, but not the equiaxed-columnar transition. The aspect ratio of the primary columnar zone was more affected by the solute content than the flow rate. However the aspect ratio of the equiaxed zone was more affected by the flow rate than the solute content. The aspect ratio of the secondary columnar zone was affected by both the flow rate and the solute content.

  • PDF