• Title/Summary/Keyword: Secondary Flow Losses

Search Result 39, Processing Time 0.019 seconds

Numerical Study of the Flow in a Transonic Centrifugal Compressor (천음속 원심압축기 내부 유동의 수치해석)

  • Seong, Seon-Mo;Kang, Shin-Hyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.228-231
    • /
    • 2008
  • Flow fields of a transonic centrifugal compressor are calculated using the commercial CFD code, CFX-TASCflow. Due to the transonic inlet condition, interactions between the shock wave and boundary layers and between the shock wave and tip leakage vortices generate complex flow structures and extra losses. The calculated results show that strong secondary flows due to high curvature and high rotational speed of the impeller. And streamlines near suction surface show that strong radially upward flow develops after the shock between the leading edge locations of main blade and splitter.

  • PDF

Effects of Incidence on Aerodynamic Losses in the Tip-Leakage Flow Region of a High-Turning Turbine Rotor Blade (입사각이 터빈 동익 팁누설유동 영역에서의 압력손실에 미치는 영향)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of incidence angle on the three-dimensional flow and aerodynamic loss in the tip leakage flow region downstream of a turbine rotor cascade has been investigated for two tip gap-to-chord ratios of h/c=0.0% (no tip gap) and 2.0%. The incidence angle is changed to be $i=-10^{\circ}$, $0^{\circ}$, and $5^{\circ}$. The results show that for $i=5^{\circ}$, secondary flows including the passage vortex are intensified noticeably, and there is a strong interaction between the passage and tip leakage vortices. For $i=-10^{\circ}$, however, the passage vortex is weakened significantly, so that there exists only a strong leakage-jet-like secondary flows near the casing wall. For h/c=0.0% and 2.0%, aerodynamic loss tends to increase with increasing i from $-10^{\circ}$ to $5^{\circ}$. A small increment of i in its positive incidence range results in a remarkable aerodynamic loss increase, while increasing i in the negative incidence range leads to a small change in the aerodynamic loss generation.

Measurement of Water Flow in Closed Conduits by Chemical Tracer Method (추적자를 이용한 유량 측정)

  • Lee, Sun-Ki;Chung, Bag-Soon;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.19-26
    • /
    • 1999
  • Thermal output in a nuclear power plant is verified with calorimetric heat balance on the secondary plant. The calorimetry involves the precise measurement of the feedwater flow rate. However, the correct indication of feedwater flow rate obtained by a pressure-difference measurement across a venturi can be affected by instrument errors, fouling or a poorly developed velocity profile. This can result in an inaccurate mass flow rate and consequently an inaccurate estimate of power. The purpose of this study is to develop verification methods with accuracy better than $0.5\%$ for high precision flow measurement to be used for measuring feedwater flow rate. This chemical tracer method is a testing process that uses tracers which can be applied to quantify losses in electrical output due to the incorrect measurements of feedwater flow rate. And this system has good response to the variation of the flow rate. Accuracy of better than 0.5 percent can be expected for feedwater flow measurement, providing that the system can be stabilized during the test. This methodology is applicable to other flow systems well.

  • PDF

Performance Prediction of Centrifugal Pumps using a Two Zone Model (두영역모델을 사용한 원심펌프의 성능예측)

  • Choi, Young-Seok;Shim, Jae-Hyeok;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.56-63
    • /
    • 1999
  • In this study, the performance prediction programs for centrifugal pumps are developed. To estimate the losses in the centrifugal pump impellers, a two-zone model and TEIS(two elements in series) model are applied to the program. The basic concept of a two zone model considers the primary zone that is an isentropic core flow and the secondary zone that has a non-isentropic region at the impeller exit. The flow goes through two different zones and is mixed out at the impeller exit and the mixing process occurs with an increase in entropy, a decrease in total pressure. The level of the core flow diffusion in an impeller was calculated using TEIS(two elements in series) model. The effects of various parameters which are used in this program on the prediction of head and efficiency are discussed. The correlation curves used to select the effectiveness of the primitive TEIS model were suggested according to the specific speed of the centrifugal pumps.

  • PDF

Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction (폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실)

  • Lee, Sang-U;Kim,Yong-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

A Study on the Quasi-3-Dimensional Compressible Flow Calculation by Introduction of Viscous Loss Model in Axial-Flow Compressor (점성 손실모델 도입에 의한 축류 압축기 준 3차원 압축성 유동해석)

  • 조강래;이진호;김주환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1044-1051
    • /
    • 1989
  • A numerical calculation is carried out for the analysis of 3-dimensional compressible flow field in axial-flow rotating blades by using finite element method. The calculation of flow in impellers plays a dominant role in the theoretical research and design of turbomachines. Three-dimensional flow fields can be obtained by the quasi-three-dimensional iterative calculation of the flows both on blade-to-blade stream surfaces and hub-to-shroud stream surfaces with the introduction of viscous loss model in order to consider a loss due to viscosity of fluid. In devising the loss model, four primary sources of losses were identified: (1) blade profile loss (2) end wall loss (3) secondary flow loss (4) tip-leakage loss. For the consideration of an axially parabolic distribution of loss, the results of present calcullation are well agreed with the results by experiment, thus the introduction of loss model is proved to be valid.

EMTP-analysis of Transposition Effects on Underground Transmission Cables (EMTP를 이용한 지중케이블의 도체 연가 영향 분석)

  • Ha, C.W.;Han, S.H.;Heo, H.D.;Lee, I.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.93-94
    • /
    • 2006
  • The sheath of a single-conductor cable for ac service acts as a secondary of a transformer, the current in the conductor induces a voltage in the sheath. When the sheaths of single-conductor cables are bonded to each other, as is common practice for multi-conductor cables, the induced voltage causes current to flow in the completed circuit. This current causes losses in the sheath. Various methods of bonding may be used for the purpose of minimizing sheath losses. In korea, sheath cross bonding system was employed for the prevention of sheath losses, the sheaths wire subjected to at voltages, and the bonding was designed to keep the magnitude of the induced voltages within small limits so as to prevent the possibility of sheath corrosion. But, sheath cross bonding system without transposition of cable can not achieve an exact balance of induced sheath voltages unless the cables are lain in trefoil. This paper describes a transposition system with sheath cross bonding using EMTP(Electromagnetic Transient Program). The transposition system with cross bonding can be extended to longer cable circuits for laid in flat as wall as trefoil by the methods described in this paper.

  • PDF

3-Dimensional Model for Pulverized Coal Combustion (미분탄 연소로의 난류 유동장 및 반응장 해석을 위한 3차원 모델)

  • 이경옥;서경원;최병선
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.76-86
    • /
    • 1992
  • A three-dimensional model has been developed for pulverized coal combusters and gasifiers. Coal devolatilization, heterogeneous char oxidation, gas particle interchange, radiation, gas phase oxidation, primary and secondary stream mixing, and heat losses are considered. A finite difference method was used to solve the ordinary non-linear differential equations. The effects of primary and secondary stream flow ratio and coal particle size are investigated.

  • PDF

Performance Prediction of Centrifugal Pumps using Two Zone Model (두영역모델을 사용한 원심펌프의 성능예측)

  • Choi, Young-Seok;Shim, Jae-Hyeok;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.33-41
    • /
    • 1998
  • In this study, the performance prediction programs for centrifugal pumps are developed. To estimate the losses in the centrifugal pump impellers, two-zone model and TEIS(two elements in series) model are applied to the program. The basic concept of two zone model considers the primary zone that is an isentropic core flow and the secondary zone that is non-isentropic region at the impeller exit. The flows through two different zones mixed out at the impeller exit and the mixing process occurs with an increase in entropy, a decrease in total pressure. The level of the core flow diffusion in a impeller was calculated using TEIS(two elements in series) model. The effects of various parameters which are used in this program on the prediction of head and efficiency are discussed. The correlation curves to select the effectiveness of the primitive TEIS model were suggested according to the specific speed of the centrifugal pumps.

  • PDF

Analysis of Aerodynamic Performance in an Annular Compressor Bowed Cascade with Large Camber Angles

  • Chen, Shaowen;Chen, Fu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The effects of positively bowed blade on the aerodynamic performance of annular compressor cascades with large camber angle were experimentally investigated under different incidences. The distributions of the exit total pressure loss and secondary flow vectors of compressor cascades were analyzed. The static pressure was measured by tapping on the cascade surfaces, and the ink-trace flow visualizations were conducted. The results show that the value of the optimum bowed angle and optimum bowed height decrease because of the increased losses at the mid-span with the increase of the caber angle. The C-shape static pressure distribution along the radial direction exists on the suction surface of the straight cascade with large r camber angles. When bowed blade is applied, the larger bowed angle and larger bowed height will further enhance the accumulation of the low-energy fluid at the mid-span, thus deteriorate the flow behavior. Under $60^{\circ}$ camber angle, flow behavior near the end-wall region of some bowed cascades even deteriorates instead of improving because the blockage of the separated flow near the mid-span keeps the low-energy fluid near the end-walls from moving towards the mid-span region, and as a result, a rapid augmentation of the total loss is easy to take place under large bowed angle. With the increase of camber angle, the choice range of bowed angle corresponding to the best performance in different incidences become narrower.