• 제목/요약/키워드: Secondary Flow Loss

검색결과 119건 처리시간 0.021초

터빈 동익 컷백스퀼러팁 하류에서의 3차원 유동 및 압력손실 (Three-Dimensional Flow and Aerodynamic Loss Downstream of Turbine Rotor Blade with a Cutback Cavity Squealer Tip)

  • 김선웅;이상우
    • 한국유체기계학회 논문집
    • /
    • 제14권1호
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of channel cutback on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-to-chord ratio of $h_{st}/c$ = 5.51% and h/c = 2.0% respectively. The cutback length-to-camber ratio is changed to be $CB/c_c$ = 0.0, 0.1, 0.2 and 0.3. The results show that longer cutback delivers not only stronger secondary flow but also higher aerodynamic loss in the tip leakage vortex region, meanwhile it leads to lower aerodynamic loss in the passage vortex region. The discharge of cavity fluid through the cutback opening provides a beneficial effect in the reduction of aerodynamic loss, whereas there also exists a side effect of aerodynamic loss increase due to local wider tip gap near the trailing edge. With increasing $CB/c_c$ from 0.0 to 0.3, the aerodynamic loss coefficient mass-averaged all over the measurement plane tends to increase slightly.

터보펌프 인듀서의 유동 및 성능의 수치적 평가 (Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers)

  • 심창열;강신형
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.22-28
    • /
    • 2002
  • Steady state flow calculations are conducted for the newly-designed turbo-pump inducers to validate the performance of Tascflow code. Hydrodynamic performance is evaluated, and structures of the passage flow and leading edge recirculation are also investigated. The calculated results show good coincidence with the experimental data of the static pressure performance and velocity profiles near the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure losses. Amount of pressure losses from the upstream to the leading edge corresponds to that of pressure losses through the whole blade. The total viscous losses are considerably large due to the strong secondary flow.

나선코일 튜브 내에서의 압력손실에 관한 연구 (A Study on the Pressure Loss in Helically Coiled Tubes)

  • 한규일;박종운
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.155-165
    • /
    • 1998
  • The resistance coefficient and heat transfer performance are studied for the turbulent water flow in a smooth coiled tube having variable curvature ratios and a corrugated-coiled tube having a ratio of coil to tube diameter of 22. Experiments are carried out for the fully developed turbulent flow of water in tube coils on the uniform wall temperature condition. This work is limited to tube coils of R/a between 22 and 60 and Reynolds numbers from 13000 to 53000. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. A corrugated-coiled tube(R/a=60) shows more excellent performance than a smooth coiled tub (R/a=60) at a similar curvature ratio. The friction factor f is sensitive to changes in the velocity profile caused by a temperature gradient. Allowance was made for the pressure loss in the short inlet and outlet lengths and due to the presence of the thermocouple inlet and outlet as a result of separate experimental on a straight tube. It is to be expected that the allowance at the exit will be somewhat too low because of secondary flow effects carried over from the coil.

  • PDF

사각 덕트내 요철의 각도 변화에 따른 열전달 특성 (Augmented heat transfer in a rectangular duct with angled ribs)

  • 우성제;김완식;조형희
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.530-541
    • /
    • 1998
  • Heat transfer augmentation in a rib-roughened duct is affected by the rib configurations, such as rib height, angle of attack, shape, rib to rib pitch, and aspect ratio of a duct. These have been the main subjects in studying the average heat transfer and the friction loss of the fully developed flow. Investigating distributions of local heat transfer coefficients and flow patterns in a duct with the rib turbulators is necessary to find the characteristics of heat transfer augmentation and to decide the optimal configurations of ribs. In the present study the numerical analyses and the mass transfer experiments are performed to understand the flow through a rib roughened duct and the heat transfer characteristics with various angles of attack of ribs. A pair of counter-rotating secondary flow in a duct has a main effect on the lateral distributions of local mass transfer coefficients. Downwash of the rotating secondary flow, reattachment of main flow between ribs and the vortices near ribs and wall enhanced the mass transfer locally up to 8 times of that in case of the duct without ribs.

설계점 및 탈설계점에서의 원심압축기 회전차 내부 2차유동 (Secondary flows through an impeller of centrifugal compressor at design and off-design conditions)

  • 최영석;강신형
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3573-3588
    • /
    • 1996
  • The flow through a centrifugal compressor impeller was calculated using the 3-dimensional Navier-Stokes solution method. A control volume method based on a rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. Numerical results and experimental data were compared for the overall performance of the impeller, the pressure distributions along the shroud wall and the detailed flowfields at the design and off-design conditions, which showed good coincidence. The flow through the impeller is complex with the curvature of the streamlines and rotation. The development of secondary flows and the jet-wake flow characteristics, which is the main source of flow loss, was discussed. Calculation results show quite different patterns as the flow rate changes.

블레이드 앞전 3차원 형상 변형에 의한 터빈 캐스케이드 내의 이차유동 제어 (Secondary flow Control in the Turbine Cascade with the Three-Dimensional Modification of Blade Leading Edge)

  • 김정래;문영준;정진택
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1552-1558
    • /
    • 2002
  • The blade leading edge is modified to control the secondary flow generated in the turbine cascade with fence by intensifying the suction side branch of the horseshoe vortex. The incompressible Navier-Stokes equations are numerically solved with a high Reynolds number k-$\varepsilon$ turbulence closure model for investigating the vortical flows in the turbine cascade. The computational results of total pressure loss coefficients in the wake region are first compared with experiments for validation. The structure and strength of the passage vortex near the suction surface are examined by testing various geometrical parameters of the turbine blade leading edge.

선형 터빈 케스케이드 통로에서의 3차원 유동 특성 (Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage)

  • 차봉준;이상우;이대성
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

날개-평판 접합부에서의 날개 앞전 판 최적화를 통한 유동특성 향상 (Improvement of the flow around airfoil/flat-plate junctures by optimization of the leading-edge fence)

  • 조종재;김귀순
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.829-836
    • /
    • 2009
  • 말굽와류로 대표되는 3차원 유동현상은 필연적으로 주유동에 대한 2차 유동의 형태로 발생되며, 유동손실을 유발하게 된다. 본 논문에서는 2차유동 손실을 일으키는 주요 요인중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 설치한 판에 대해, 판의 설치 높이, 길이, 폭 및 두께 등의 형상변수를 설계변수로 정하여 이를 최적화하였다. 근사최적설계 기법을 이용 최적화를 수행하였으며, $FLUENT^{TM}$$iSIGHT^{TM}$를 이용하였다. 최적화 수행결과, 기준 모델의 경우보다 전압력 계수가 약 7.5% 감소하였다.

일반적인 날개 형상에서의 앞전 판에 의한 말굽와류 제어 (Controlling the Horseshoe Vortex by the Leading-Edge Fence at a Generic Wing-Body Junction)

  • 조종재;김귀순
    • 한국항공우주학회지
    • /
    • 제37권4호
    • /
    • pp.336-343
    • /
    • 2009
  • 터빈 익렬 내의 2차유동손실은 터빈 익렬에서 발생하는 전체 공기역학적 손실의 30~50% 차지한다. 따라서 터빈 효율 향상에 있어 개선해야 될 중요한 부분으로 인식되고 있다. 또한, 과거부터 2차유동에 의한 손실을 줄이기 위한 많은 연구들이 수행되어졌다. 본 논문에서는 2차유동손실을 일으키는 요인 중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 판을 설치하였으며, 판의 설치 높이 및 길이 등의 형상변수에 따라 발생된 말굽와류의 특성에 대해 연구하였다. 연구를 위해 $FLUENT^{TM}$를 이용하였다. 그리고 기준 모델의 경우보다 전압력 손실 계수가 약 4.0% 향상되었다.

단순 날개-몸체 접합부에서의 앞전 모서리 홈에 의한 말굽와류 제어 (Controlling the Horseshoe Vortex by Leading-Edge Chamfer at a Generic Wing-Body Junction)

  • 조종재;김귀순
    • 한국추진공학회지
    • /
    • 제13권2호
    • /
    • pp.26-34
    • /
    • 2009
  • 터빈 익렬 내에서 발생하는 2차유동손실은 터빈 동익 또는 정익렬에서 전체 공기역학적 손실의 30~50%차지하며, 터빈 효율 향상에 있어 개선해야 될 중요한 부분으로 인식되고 있으며, 과거부터 2차유동에 의한 손실을 줄이기 위한 많은 연구들이 수행되었다. 본 논문에서는 2차유동손실을 일으키는 요인 중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 모서리 홈을 설치하였으며, 설치 홈의 높이 및 깊이 등의 형상 변수를 변화시켜가면서 말굽와류의 발생 영역 및 강도의 감쇄 특성 및 구조에 대해 상용코드인 $FLUENT^{TM}$를 이용하여 수치해석적인 방법으로 연구하였다. 그리고 최상의 경우, 기준 모델의 경우보다 전압력 손실이 약 1.55% 감소함을 발견하였다.