Controlling the Horseshoe Vortex by Leading-Edge Chamfer at a Generic Wing-Body Junction

단순 날개-몸체 접합부에서의 앞전 모서리 홈에 의한 말굽와류 제어

  • 조종재 (부산대학교 항공우주공학과 대학원) ;
  • 김귀순 (부산대학교 항공우주공학과)
  • Published : 2009.04.30

Abstract

Secondary flow losses can be as high as 30~50% of the total aerodynamic losses for a turbo-machinery blade or stator row. These are important part for improving a turbine efficiency. Therefore, many studies have been performed to decrease the secondary flow losses. The present study deals with the chamfered leading-edge at a generic wing-body junction to decrease the horseshoe vortex, one of factors to generate the secondary flow losses, and investigates the vortex generation and the characteristics of the horseshoe vortex with the chamfered height, and depth of the chamfer by using $FLUENT^{TM}$. It was found that the total pressure loss for the best case can be decreased about 1.55% compare to the baseline case.

터빈 익렬 내에서 발생하는 2차유동손실은 터빈 동익 또는 정익렬에서 전체 공기역학적 손실의 30~50%차지하며, 터빈 효율 향상에 있어 개선해야 될 중요한 부분으로 인식되고 있으며, 과거부터 2차유동에 의한 손실을 줄이기 위한 많은 연구들이 수행되었다. 본 논문에서는 2차유동손실을 일으키는 요인 중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 모서리 홈을 설치하였으며, 설치 홈의 높이 및 깊이 등의 형상 변수를 변화시켜가면서 말굽와류의 발생 영역 및 강도의 감쇄 특성 및 구조에 대해 상용코드인 $FLUENT^{TM}$를 이용하여 수치해석적인 방법으로 연구하였다. 그리고 최상의 경우, 기준 모델의 경우보다 전압력 손실이 약 1.55% 감소함을 발견하였다.

Keywords

References

  1. Sharma O. P., Butler T. L., 'Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades,' Journal of Turbomachinery, Vol. 109, 1987, pp.229-236 https://doi.org/10.1115/1.3262089
  2. Langston L. S., 'Secondary Flows in Axial Turbines - A Review,' International Symposium Heat Transfer in Gas Turbine Systems, 2000 https://doi.org/10.1111/j.1749-6632.2001.tb05839.x
  3. Eckerle, W. A. and Langston, L. S., 'Horseshoe Vortex Formation Around a Cyliner,' Journal of Turbomachinery, Vol. 109, 1987, pp.278-285 https://doi.org/10.1115/1.3262098
  4. Kubendran, L. R. and Harvey, W. D., 'Juncture Flow Control Using Leading- Edge Fillets,' 1985, AIAA-85-4097
  5. Devenport, W. J., Simpson, R.L., Dewitz, M.B and Agarwal, N.K. 'Effects of a Leading-Edge Fillet on the Flow Past an Appendage-Body Junction,' AIAA J., Vol. 30, No. 9, 1992, pp.2177-2183 https://doi.org/10.2514/3.11201
  6. Zess, G. A. and Thole, K. A., 'Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane,' Journal of Turbomachinery, Vol. 124, 2002, pp.167-175 https://doi.org/10.1115/1.1460914
  7. Olçmen, S. and Simpson, R., 'An Experimental Study of a Three-Dimensional Pressure-Driven Turbulent Boundary Layer,' Journal of Fluid Mechanics, Vol. 290, 1995, pp.225-262 https://doi.org/10.1017/S0022112095002497
  8. Olçmen, S. and Simpson, R., 'Some Features of a Turbulent Wing-body Junction Vortical Flow,' 35th AIAA Aerospace Sciences Meeting and Exhibit, 1997, AIAA-97-0651 https://doi.org/10.1016/j.ijheatfluidflow.2006.02.019
  9. Jones, D. and Clarke, D., 'Simulation of a Wing-Body Junction Experiment Using the Fluent Code,' Dsto-tr-1731, Defence Science and Technology Organization, Australian Government, Department of Defense, 506 Lorimer St., Fishermans Bend, Victoria 3207, Australia, 2005
  10. Yakhot V., Orszag S. A., 'Renormalization Group Analysis of Turbulence. 1. Basic Theory,' Journal of Science Computation, Vol. 1, 1986, pp.3-51 https://doi.org/10.1007/BF01061452
  11. Hermanson, K. S. and Thole, K. A., 'Effect of Inlet Conditions on Endwall Secondary Flows,' Report 99-2, Convective Heat Transfer Laboratory, Mechanical Engineering Department, University of Wisconsin-Madison, 1999
  12. Gregory-Smith D. G., Walsh J. A., Graves C. P., Fulton K. P., 'Turbulence Measurement and Secondary Flows in a Turbine Rotor Cascade,' Journal of Turbomachinery, Vol. 110, 1988, pp.479-485 https://doi.org/10.1115/1.3262221