• Title/Summary/Keyword: Second-order temperature

Search Result 623, Processing Time 0.029 seconds

Second-order velocity and temperature in pulse tube refrigerators (맥동관냉동기의 2차속도와 온도)

  • Lee, H.J.;Chae, W.B.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.239-248
    • /
    • 1997
  • Steady components and unsteady components of second-order velocity and temperature within pulse tube refrigerators were obtained. Second-order solutions were obtained from the first-order solutions of continuity, momentum and energy equations, assuming that the amplitude of the piston motion is small. The axial temperature gradient was considered in the analysis. The flow direction of the streaming was consistent with previous experimental observations. Effects of axial temperature gradient on secondary flow and second-order temperature were shown.

  • PDF

Unsteady Components of Second-order Velocity and Temperature in a Pulse Tube (맥동관 내부의 2차 속도와 온도의 비정상성분)

  • 박희찬;정은수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.69-76
    • /
    • 2001
  • Unsteady components of the second-order axial velocity and temperature within a tapered pulse tube were obtained by using a novel hybrid method of solution which combines an analytical solution with a numerical solution. The effects of operating frequency, taper angle and cold eng temperature on the unsteady components of the second-order axial velocity and temperature were shown. The unsteady component of the second-order mass flux had the amplitude of the same order as the steady component when the velocities at the ends of the pulse tube have only first-order components.

  • PDF

Temperature effect on spherical Couette flow of Oldroyd-B fluid

  • Hassan, A. Abu-El;Zidan, M.;Moussa, M.M.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • The present paper is concerned with non-isothermal spherical Couette flow of Oldroyd-B fluid in the annular region between two concentric spheres. The inner sphere rotates with a uniform angular velocity while the outer sphere is kept at rest. Moreover, the two spherical boundaries are maintained at fixed temperature values. Hence, the fluid is effect by two heat sources; namely, the viscous heating and the temperature gradient between the two spheres. The viscoelasticity of the fluid is assumed to dominate the inertia such that the latter can be neglected. An approximate analytical solution of the energy and momentum equations is obtained through the expansion of the dynamical fields in power series of Nahme number. The analysis show that, the temperature variation due to the external source appears in the zero order solution and its effect extends to the fluid velocity distribution up to present second order. Viscous heating contributes in the first and second order solutions. In contrast to isothermal case, a first order axial velocity and a second order stream function fields has been appeared. Moreover, at higher orders the temperature distribution depends on the gap width between the two spheres. Finally, there exist a thermal distribution of positive and negative values depend on their positions in the domain region between the two spheres.

Optimization of Rice (Oryza Sativa) Malting Process by Second-Order Experimental Design

  • Nguyen, Thach Minh;Nguyen, Xich Lien;Hoang, Kim Anh;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.282-290
    • /
    • 2008
  • The malting process of rice (OM4080 variety from Mekong Delta Rice Research Institute) was studied under pilot condition plan by means of the second-order experimental design. Processing parameters, such as the steeping time (0-60 hrs), steeping temperature ($5-45^{\circ}C$), germination time (0-8 days), germination temperature ($5-45^{\circ}C$) and gibberellin concentration (0-2 mg/kg) were investigated. As a result, all germination conditions, especially germination time, germination temperature, and gibberellin concentration had a significant effect on the malting loss, amylase activity and starch content. The protein content was not clearly affected by any conditions. The optimum conditions for malting process (with highest amylase activity) were as follows: 30 hrs of steeping time, $30-35^{\circ}C$ of steeping temperature, 5-5.5 days of germination time, $25^{\circ}C$ of germination temperature, and 1.5 mg/kg of giberrellin concentration.

Direct Numerical Simulation and Second-Order Conditional Moment Closure Modelling of a Turbulent Hydrocarbon Flame (난류 탄화수소화염의 직접수치해석 및 이차 조건모멘트닫힘 모델링)

  • Kim, Seung-Hyun;Huh, Kang Y.;Bilger, Robert W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.35-41
    • /
    • 2001
  • A second-order conditional moment closure(CMC) model is applied to the prediction of local extinction in a turbulent hydrocarbon diffusion flame and compared with direct numerical simulation(DNS) results for the flame. Combustion of a hydrocarbon fuel is described by a simple two-step mechanism. A second-order correction for conditional mean reaction rate terms is made by the assumed pdf method. The results show that the second-order closure is necessary for accurate prediction of intermediate species, while first-order CMC gives good predictions for fuel, oxidant, product and temperature. Conditional variances and covariances are well predicted during an extinction process while they are overpredicted during a reignition process.

  • PDF

Empirical Equations for Thermodynamic Physical Properties of Inert Gas (불활성 기체에 대한 열역학적 실험식)

  • 김재덕;여미순;이윤우;노경호
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 2003
  • Inert gases, Af, $N_2$, $CO_2$, as a Halon alternative, the empirical equations were correlated in terms of saturated pressure, density and viscosity, They were obtained by regression analysis from the experimental data in the literature. The empirical equations of saturated pressure were expressed as the second and third order function of temperature. The empirical equation for Ar and $N_2$ of density were expressed as the first order function of temperature. And $CO_2$ was expressed as the second and third order function of temperature. The empirical equation of viscosity was formulated as a power function with temperature. This empirical equations would allow us to predict pure component state.

A COMPARISON OF THE ACCESSORY CANAL FILLING EFFECTS OF THE THREE ROOT CANAL FILLING METHODS WITH GUTTA-PERCHA (Gutta-percha를 이용(利用)한 세가지 근관충전법(根管充塡法)의 부근관충전(副根管充塡) 효과비교(效果比較))

  • An, Seong-Ho;Cho, Kyew-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.121-133
    • /
    • 1989
  • In order to compare the accessory canal filling effects of the three root canal filling methods with gutta-percha, the author fabricated artificial root canal mold with the first and second accessory canals of chrome-cobalt alloy. After the artificial root canal was filled with gutta-percha by lateral condensation, vertical condensation and low-temperature thermoplasticized gutta-percha injection-molded method, twenty five times respectively, the gutta-percha forced into the first and second accessory canals were measured with caliper for length. The results were as follows: 1. The filling in both accessory canals was most effective in low-temperature thermoplasticized gutta-percha injection-melded method followed in such order as: vertical condensation method and lateral condensation method (p < 0.01). 2. The filling effect of the second accessory canal was more or less higher than that of the first one (p < 0.05). 3. Low-temperature thermoplasticized gutta-percha injection-molded method was fastest in time needed for root canal filling followed by lateral condensation method and vertical condensation method.

  • PDF

First-and Second-Order Statistics of Washita'92 Soil Moisture Data (Washita '92 토양수분 자료의 1차원 및 2차원 통계특성)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.145-153
    • /
    • 1998
  • In this paper the first- and second order statistics of soil moisture are derived using the Washita '92 data. Also the possible correlations among the soil texture, the brightness temperature, the NDVI and the soil moisture are investigated based in the linear regression study. Only the correlation between the soil moisture and the brightness temperature shows significant values. The soil moisture decay coefficients in time were estimated for each soil type and cross-checked by calculating the last rainfall time before the observation to be about 20days in all different soil types. The second-order statistics of soil moisture based on the correlogram and the spectrum was analyzed to derive the data characteristics and compared with those of the NDVI and the soil texture. This analysis shows that the soil moisture within the highly correlated soil texture field is affected much by the relatively less correlated vegetation field in the Washita area, where the effect of topography is known to be small. The soil moisture media was derived and its parameters were estimated successfully using the first - and sedcond -order statistics.

  • PDF

Temperature Control of Electric Furnaces using Adaptive Time Optimal Control (적응최적시간제어를 사용한 전기로의 온도제어)

  • Jeon, Bong-Keun;Song, Chang-Seop;Keum, Young-Tag
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.

Empirical Equations for Physical Properties of Halon-1301 and $CO_2$ (Halon-1301과 $CO_2$의 물성에 관한 실험식)

  • 노경호;송명석;한순구;김재덕;이윤우
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.51-58
    • /
    • 2002
  • For Halon-1301 regulated by Montreal Protocol and $CO_2$as its alternatives, the empirical equations of density, viscosity, and enthalpy were correlated in terms of temperature. They were obtained by regression analysis from the experimental data in the literature. The empirical equation of density was expressed as compressibility factor by the second- order function of temperature. The empirical equation of viscosity was formulated as a power function, and a correction factor was considered to cover the wider range of temperature. Finally, heat capacity as well as enthalpy were well fitted by empirical form of the second-order temperature. The correlation coefficients of the empirical equations in this work were more than 0.99.