• Title/Summary/Keyword: Second hole

Search Result 211, Processing Time 0.03 seconds

다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향 (Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle)

  • 서현규;김지원;이창식
    • 한국분무공학회지
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

형상 차이 기반 홀 패치의 파라미트릭 블렌딩 기법 (Parametric Blending of Hole Patches Based on Shape Difference)

  • 박정호;박상훈;윤승현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제26권3호
    • /
    • pp.39-48
    • /
    • 2020
  • 본 논문에서는 삼각 메쉬의 홀을 채우는 새로운 기법을 제시한다. 첫번째, 임의 모양의 홀을 검출한다. 두번째, 삼각화(triangulation), 세분화(refinement), 공정화(fairing), 스무딩(smoothing) 과정을 통해 소스 및 타겟 홀 패치를 생성한다. 마지막으로, 두 패치 사이의 형상 차이를 분석하고 패치간 블렌딩을 통해 특징이 강조된 홀 패치를 얻는다. 다양한 모양의 홀을 갖는 삼각 메쉬 모델에 홀 채움 기법을 적용하여 모델을 복원함으로써 제안된 기법의 효과성을 입증한다.

Hole and Pillar Patterned Si Absorbers for Solar Cells

  • Kim, Joondong;Kim, Hyunyub;Kim, Hyunki;Park, Jangho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.226-226
    • /
    • 2013
  • Si is a dominant solar material, which is the second most abundant element in the earth giving a benefit in the aspect in cost with low toxicity. However, the inherent limit of Si has an indirect band gap of 1.1 eV resulting in the limited optical absorption. Therefore, a critical issue has been raised to increase the utilization of the incident light into the Si absorber. The enhancement of light absorption is a crucial to improve the performances and thus relieves the cost burden of Si photovoltaics. For the optical aspect, an efficient design of a front surface, where the incident light comes in, has been intensively investigated to improve the performance of photon absorption. Lambertian light trapping can be attained when the light active surface is ideally rough to increase the optical length by about 50 compared to a planar substrate. This suggests that an efficient design may reduce thickness of the Si absorber from the conventional 100~300 ${\mu}m$ to less than 3 ${\mu}m$. Theoretically, a hole-array structure satisfies an equivalent efficiency of c-Si with only one-twelfth mass and one-sixth thickness. Various approaches have been applied to improve the incident light utilization in a Si absorber using textured structures, periodic gratings, photonic crystals, and nanorod arrays. We have designed hole and pillar structured Si absorbers. Four-different Si absorbers have been simultaneously fabricated on an identical Si wafer with hole arrays or pillar arrays at a fixed depth of 2 ${\mu}m$. We have found that the significant enhanced solar cell performances both for the hole arrayed and pillar arrayed Si absorbers compared to that of a planar Si wafer resulting from the effective improvement in the quantum efficiencies.

  • PDF

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

구조적 공백과 협업필터링을 이용한 추천시스템 (Recommender Systems using Structural Hole and Collaborative Filtering)

  • 김민건;김경재
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.107-120
    • /
    • 2014
  • 본 연구에서는 사회연결망분석기법 중 하나인 구조적 공백 분석 결과를 이용하여 추천과정에 사용자의 정성적이고 감성적인 정보를 반영할 수 있는 협업필터링 기반의 추천시스템을 제안한다. 협업필터링은 추천기술 중 가장 많이 활용되고 있지만 전통적으로 확장성과 희박성 등의 문제점뿐 만 아니라 사용자-상품 매트릭스의 선호도만을 이용하여 추천을 함으로써 사용자의 정성적이고 감성적인 정보를 추천과정에 반영하지 못한다는 한계점이 있다. 본 연구에서 제안하는 추천시스템은 사회연결망분석에서 중심성 분석과 함께 연결망 내의 주요개체를 탐지할 수 있는 구조적 공백 분석을 이용하여 연결망 내의 대표 사용자들을 추출한 후 이들을 중심으로 군집을 형성한 후 각 군집색인 협업필터링을 수행하는 과정을 통해 전통적인 협업필터링에서 반영하지 못했던 정성적, 감성적 정보를 반영한다. 한편, 군집색인 협업필터링을 수행함으로써 추천의 효율성을 높일 수 있는 장점도 있다. 본 연구에서는 실제 사용자들의 상품에 대한 선호도 평가점수와 사용자들의 사회연결망 정보를 수집하여 실험을 수행하고 전통적인 협업필터링과 다양한 형태의 협업필터링과의 추천성과 비교를 통하여 제안하는 시스템의 유용성을 확인한다. 비교모형으로는 전통적인 협업필터링, 임의 군집색인 기반 협업필터링, k평균 군집색인 기반 협업필터링을 이용한 추천시스템이며, 실험 결과, 제안한 모형이 다른 비교모형에 비해 추천성과의 정확도가 가장 우수하였다. 추천성과의 차이에 대한 통계적 유의성 검정 결과, 제안 모형은 전통적인 협업필터링 기반의 추천시스템과는 통계적으로 유의한 성과 차이가 없었으나, 다른 두 모형에 대해서는 통계적으로 유의한 성과의 차이가 있는 것으로 나타났다.

방전드릴링에서 홀 관통 평가 방법 (A Method of Hole Pass-Through Evaluation for EDM Drilling)

  • 이철수;최인휴;허은영;김종민
    • 대한산업공학회지
    • /
    • 제38권3호
    • /
    • pp.220-226
    • /
    • 2012
  • The Electric discharge machining (EDM) process is used to minimize the difference between designed feature and machined feature while the most workpiece is removed through the cutting processes. The tiny-deep hole machining and perpendicular wall machining in mold and die are good applications of EDM. Among EDM equipment, the super drill uses the hollowed electrode to eliminate the debris which causes the second discharge with the electrode and degrades the machining quality. Through the hollow, the high pressured discharge oil is supplied to remove the debris together with the spindle rotation. The thin-hollow electrode tends to easily wear out compared to the sold die-sinking electrode and its wear rate is might not allowed to monitor in real time during discharging. Up to now, the wear amount is measured by off line method, which leads machining time to increase because the hole pass-through moment can be check by visual (manually) with the extra tool path. Therefore, this study suggests the attractive method to evaluate the hole pass-through moment in which the gap voltage and z-axis encoder pulse are monitored to predict the moment. The commercial super drill is used to validate the proposed method and the experiment is carried out.

취학 전 아동의 손 기민성과 시각-운동 기술과의 상관성에 대한 연구 (Correlations Between Hand Dexterity and Visual-Motor Skills of the Preschooler)

  • 강현진;고경혜;박수정;박주연;장문영
    • 대한감각통합치료학회지
    • /
    • 제3권1호
    • /
    • pp.13-21
    • /
    • 2005
  • Objective : The purpose of this study was to investigate the correlation between hand dexterity and visual-motor skills of preschoolers. We searched for the correlation between two test results, which were the 9-Hole Peg Test performance time and the visual motor integration test(VMI) performance score. Then, we also compared the 9-Hole Peg Test performance times with the VMI performance scores according to sex and age. Method : The participants were fifty normal children ranging in age from four to six years living in Busan. We used two test methods which have high reliability and validity. One was the 9-Hole Peg Test to evaluate hand dexterity, and the other was the VMI to the evaluate visual-motor skills of these young children. Results : First, over the entire range of the participating children, there was a high correlation between the performance times from the 9-Hole Peg Test and the VMI performance scores(r=-.682). Second, there was not a statistically significant difference between the performance times from the 9-Hole Peg Test and the VMI scores according to sex. Third, there were significant differences between the hand dexterity and visual-motor skills according to the children's age(p<.001). Conclusion : This study proved that there is high correlation between hand dexterity and visual-motor skills of the preschooler. Occupational therapists in preschool service should consider that visual-motor skills need to be compatible with hand dexterity in both evaluation and therapy. In addition, hand dexterity and visual-motor skills improved according to advances in age, so we must give graded tasks to proper age groups through concrete analysis of activity. By doing this, children can get the better therapeutic effects.

  • PDF

미세 다공 박판제품 생산성 향상을 위한 진공 시스템의 개선 (Development of Vacuum System for Improving Productivity of Fine Multi-hole Sheet Metal Product)

  • 박준홍;권택환;최영;김철;최재찬
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.180-188
    • /
    • 2000
  • Fine multi-hole sheet metal product(FMSMP) is a specific metal plate which is used in color TV and computer monitor. Processes of manufacturing FMSMP are generally composed of coating cleaning exposure and etching processes. After a thin metal plate is made by rolling photosensitive liquid is coated on the metal plate in coating process. Then the coated thin metal plate consecutively passes through exposure process in which upper and lower glasses are compressed by vacuuming the space between glasses and metal plate. In this lowered glasses are compressed by vacuuming the space between glasses and metal plate. In this lowered vacuum state certain part of metal plate is desirably exposed to light and will be etched into forming lots of well-arranged holes with a specific diameter, nowadays to manufacture FMSMP of 17 inch braun tube 80 second is required for complete vacuum but 35 second is applied to manufacture FMSMP in reality. In the present study vacuuming time is tried to reduce for improvement of productivity by analyzing vacuum system and proposing several solutions, for faster vacuuming speed degree of vacuum state between glasses and metal plate is improved by the proposed method and experiments using the proposed method are performed for verification. In addition microstructure of FMSMP is investigated to prevent stain phenomena and to improve quality of the product.

  • PDF

다익 팬/스크롤 시스템의 로터 내부 유동 특성에 관한 실험적 연구 (An Experimental Study for Flow Characteristics Inside the Rotor of a Multiblade Fan/Scroll System)

  • 맹주성;윤준용;안태범;윤종은;한덕전
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.646-652
    • /
    • 1999
  • Detailed characteristics of the mean flow field inside the rotor of a multiblade fan with scroll are presented in this paper by measurements and visualizations. The measurements were taken with a five-hole probe and conformed by smoke test. How field is distinguished clearly in 3 regions with respect to the flow directions. The first region is near the exit of scroll where the fluid flows the opposite direction to the rotation of rotor. The second is opposite side of the scroll exit where the fluid flows the same direction to the rotation of rotor. The third is the region where the fluid flows toward the blades directly with the largest values comparatively. The strongest recirculation is happened in the second region, and the weakest one is in the third region. This complex configuration makes the flow field highly non-uniform and may cause to generate a noise and ineffective flow efficiency.