• Title/Summary/Keyword: Seawater immersion

Search Result 49, Processing Time 0.025 seconds

A Study on the Corrosion of Cu-Ni Alloy in Chlorinated Seawater for Marine Applications (잔류 염소가 포함된 해수에서의 Cu-Ni 합금의 부식 거동 연구)

  • Jung, Geunsu;Yoon, Byoung Young;Lim, Chae Seon
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.176-182
    • /
    • 2018
  • Corrosion of the Cu alloy with 10wt% Ni in stagnant seawater with residual free chlorine was investigated. Despite that fact that Cu alloys are widely used for seawater applications due to their stubborn resistance to chloride attack, not much is known as to how the residual free chlorine in seawater affects corrosion of Cu and its alloys. In this work, immersion tests were conducted in the presence of different levels of chlorine for 90-10 Cu-Ni samples, one of the most frequently used Cu alloys for seawater application, mostly in shipbuilding. The results revealed no evidence for accelerated corrosion of the Cu-Ni alloy even in the presence of 5 ppm residual chlorine in seawater, signifying that the Cu-Ni alloy can be more tolerant to residual chlorine that has been commonly cited by the shipbuilding industry. However, comparison of polarization behavior of the alloy samples in the presence of different electrolytes with different concentrations of residual chlorine suggests that higher concentration of chlorine could increase the corrosion rate of the Cu-Ni alloy. Furthermore, it is suggested that microorganisms in the seawater could increase the corrosion rate of the Cu-Ni alloy by encouraging exfoliation of the corrosion product off the metal surface.

The Effect of Seawater Temperature on the Electrochemical Corrosion Behaviour of Stainless Steels and Anodized Aluminum Alloys (스테인리스강과 양극산화된 알루미늄 합금의 전기화학적 부식특성에 미치는 해수온도의 영향)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.85-93
    • /
    • 2021
  • The corrosion damage of materials in marine environment mainly occurs by Cl- ions due to the breakdown of passive films. Additionally, various characteristics in seawater such as salinity, temperature, immersion time, flow rate, and biological activity also affect corrosion characteristics. In this study, the corrosion characteristics of stainless steels (STS 304 and STS 316L) and anodized aluminum alloys (AA 3003 and AA 6063) were evaluated with seawater temperature parameters. A potentiodynamic polarization experiment was conducted in a potential range of -0.25 V to 2.0 V at open circuit potential (OCP). Corrosion current density and corrosion potential were obtained through the Tafel extrapolation method to analyze changes in corrosion rate due to temperature. Corrosion behavior was evaluated by measuring weight loss before/after the experiment and also observing surface morphology through a scanning electronic microscope (SEM) and 3D microscopy. Weight loss, maximum damage depth and pitting damage increased as seawater temperature increased, and furthermore, the tendency of higher corrosion current density with an increase of temperature attributed to an increase in corrosion rate. There was lower pitting damage and lower corrosion current density for anodized aluminum alloys than for stainless steels as the temperature increased.

Effect of Corrosion Characteristics in Relation to Loaded Stress in the Welded Zone of A5083-H116 Aluminum Alloy (A5083-H116 알루미늄 합금재 용접부의 부하응력에 따른 부식특성의 영향)

  • Jo, S.K.;Kong, Y.S.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.44-51
    • /
    • 2004
  • Effect of corrosion characteristics in relation to loaded stress in the welded zone of A5083-H116 aluminum alloy, in the seawater was studied. The corrosion experiment was performed for 120 hours on the specimens in the natural seawater tank with four steps of the loaded stress. The corrosion crack, corrosion rate, electrode potential, current, and corrosion pattern, etc. were examined for the specimens with the elapse of the immersion time. The main result derived from this study is the crack growth length is increased with the increasing loaded stress. The electrode potential and the corrosion current are decreased rapidly in the early stage of the corrosion, and then decreased gradually and stabilized eventually with the elapse of the immersion time. The test condition of the longer crack growth tends to show the higher corrosion rate. Corrosion pattern of the welded zone indicates that the depth and width of the pitting become increasing with the increasing loaded stress.

  • PDF

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Weathering Characteristics according to Seawater Immersion of the Magai Wareiishi Jizo (Buddhist Statue Carved on Rock Surface) in Hiroshima, Japan (일본 히로시마현 마애화령석지장(磨崖和靈石地藏)의 해수 침수에 의한 풍화특성)

  • Lee, Sun Myung;Lee, Myeong Seong;Chun, Yu Gun;Lee, Jae Man;Morii, Masayuki
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.329-341
    • /
    • 2012
  • Magai Wareiishi Jizo (Buddhist statue carved on rock surface) is close to shoreline and a part of rock block is periodically immersed by seawater. Rock material of the Wareiishi-jizo statue is composed mainly of medium or coarse-grained biotite granite and very durable. However, physical properties of the rock have been changed according to the complex interactions of the salt solution and surrounding environment. Exfoliation of the rock surface is a serious condition by salt crystallization. Exfoliation (14.6%) is concentrated on the upper part of the rock block with mainly boundary of seawater as the center. On the other hand, lower part of the rock block show black layers by contaminants deposition. In addition, brown discoloration and biological contaminants is overlapped. Rock surface show high discoloration rate of 50.5% (black discoloration, 29.2% > yellow discoloration, 14.1% > brown discoloration, 4.4% > green discoloration, 2.9%). Upper part of the rock block had a lot of change in the physical properties than lower part that is immersed by seawater. In particular, surface properties of the rock block was very weak state at the boundary surface of seawater permeation.

Immersion Corrosion Characteristic of SUS420J2 Steel with a Material for Fish Pre-Processing Machinery (어류 전처리 가공기계용 재료 SUS420J2강의 침지부식 특성)

  • 김선진;안석환;최대검;정현철;김상수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.1
    • /
    • pp.79-88
    • /
    • 2002
  • 13%Cr martensitic stainless steel has been used mainly with a material for fish pre-processing machinery. However, it has not very nice cutting section because of little of the carbon content. Therefore, SUS420J2 steel that contents 0.3%C with high-strength in spite of the rust is used with a material for fish pre-processing machinery. However, studies on the corrosion characteristics of SUS420J2 steel are relatively rare. Especially, the corrosion phenomenon may cause serious degradation because the fish pre-processing machinery is exposed always to seawater environment. In this paper, the immersion corrosion test was carried out at seawater environment (pH=7.52) on SUS420J2 steel specimens that have various post-treatment conditions and its corrosion characteristics were evaluated. From test results, the specimens such as base metal, vacuum heat treatment, electrolytic polishing and tempering after quenching tend somewhat sensitive from the corrosion. In the case of vacuum heat treatment specimen of continuous immersion during 360 days, the weight loss ratio was high about seven times when compared with the different specimens. On the contrary, SUS420J2 steel specimen that has the heat treatment of tempering after quenching and the electrolytic polishing was less sensitive from the corrosion, and the weight loss ratio was very low.

Efficacy of alginate microsphere oral vaccine against Miamiensis avidus (Ciliophora: Scuticociliatida) in olive flounder (Paralichthys olivaceus) (알지네이트 코팅 Miamiensis avidus (Ciliophora: Scuticociliatida) 경구백신의 넙치(Paralichthys olivaceus)에 대한 효능평가)

  • Su-Mi Shin;Sung-Ju Jung
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.311-321
    • /
    • 2023
  • The efficacy of the alginate microsphere (Alginate MS) oral vaccine against Miamiensis avidus in olive flounder (Paralichthys olivaceus) was confirmed through challenge infections by both immersion and injection routes. In trial 1, the formalin-inactivated M. avidus coated with alginate, designated as 'IMa+Alginate MS' group, and the IMa group were administered with vaccines mixed with feed, with a total antigen dose of 3.75 × 106 cells/fish. When challenged with immersion infection at five weeks post vaccination, the relative percent survival (RPS) in the IMa+Alginate MS group was 50% (immersed in 50% seawater) and 37.5% (immersed in 100% seawater). The group that received only IMa showed a low survival rate. In trial 2, the antigen was fed mixed with feed at a total dose of 2.38 × 106 cells/fish for 5 days. Two weeks after oral vaccination, fish were intraperitoneally injected for infection. The RPS in the IMa+Alginate MS group was 30.8%, while the IMa-only group showed no vaccine efficacy. At five weeks post vaccination, when subjected to challenge infection by immersion in 50% seawater, the IMa+Alginate MS group recorded a RPS of 42.9%, whereas the IMa group had a RPS of 14.3%. The results of this study indicate that coating M. avidus antigen with alginate can provide higher protection in olive flounder compared to administering the antigen alone.

Evaluation on the Sulfate Attack Resistance of Shotcrete with Aluminate Accelerator (알루미네이트계 급결제를 사용한 숏크리트의 황산염침식 저항성 평가)

  • Kim, Seoung-Su;Kim, Hong-Sam;Lee, Gyu-Phil;Kim, Dong-Gyou;Yoon, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.527-530
    • /
    • 2005
  • Shotcrete have become a deterioration which is used in the underground such as groundwater and soil in sulfate ion. Sulfate attack on concrete structures in service is not widespread, and the amount of laboratory-based research seems. to be disproportionately large. In this study, immersion test using $Na_2SO_4$ solution($1,2,5\%$) was performed to evalute the resistance of shotcrete. From the results of the immersion test for 112 days of exposure. In order to understand the deterioration mechanism due to seawater attack, test using scanning electron microscopy(SEM) analysis and X-ray diffraction showed that the deterioration mechanism due to sulfate attack in shotcrete.

  • PDF

Quantitative Analysis on Chemisorption of NaDDTC as Organic Compound containing Sulfur for Cu-Ni Alloy (황을 포함한 유기화합물인 NaDDTC의 CuNi합금에 대한 화학적 흡착에 관한 정량적 분석)

  • Jung, Gilbong;Kim, Dongyung;Jang, Yohan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.548-557
    • /
    • 2015
  • This paper is results on Chemisorption of organic compound for the sea water fire fighting line of naval vessels. The quantitative analysis of Chemisorption has been investigated in seawater after immersion in 0.1 % of NaDDTC solutions for 43 hours. The morphology and topography were investigated by FE-SEM and AFM. The chemical elements were analyzed by SEM-EDS, XPS and the depth of chemical elements was measured by depth profiles. The effect of NaDDTC comes from Chemisorption between Copper and Sulfur of NaDDTC. As a result, test results showed that sulfur is helpful to protect a corrosion of seawater line.

Corrosion Property Evaluation of Copper Alloy Tubes against Sea Water

  • Pang, Beilli;Ong, Sang-Kil;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.280-286
    • /
    • 2009
  • In this study, the corrosion property of copper alloy tubes in seawater has been investigated. Three copper alloys of nominal composition Cu-20Zn-2Al(Al-Brass), Cu-30Ni(CN70/30) and Cu-10Ni(CN90/10) were considered. The samples were immersed in 3%NaCl flowing solution at $90^{\circ}C$ for 30, 50 and 80 days. Corrosion rate of copper alloy tubes in 3%NaCl flowing solution was investigated by weight-loss measurements and electrochemical test. The CN70/30 showed lowest corrosion rate among three copper alloy tubes. Because of passive films formation, corrosion rates of three types of copper tubes were decrease with time. Surface characteristics of copper alloy tubes were analyzed by optical micrograph(OM), scanning electronic microscopy (SEM), energy dispersive X-ray analysis(EDAX) and X-ray diffraction patterns(XRD). CN70/30 showed partly pitting problem on the surface owing to high Fe content, even though having high resistant against corrosion. Cracks appeared on the surface of CN90/10 and CN70/30 after more than 50 days immersion, which could be derived from high nickel contents.