• Title/Summary/Keyword: Seat-design

Search Result 466, Processing Time 0.031 seconds

Spot Weld Fatigue Life Prediction of Auto Set Belt Anchors Using $K_e$ (K_e에 의한 차량 안전벨트 앵커의 점용접 피로수명 예측)

  • Kim, Nam-Ho;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.701-709
    • /
    • 2000
  • As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. Recasting the load vs. fatigue life relationships experimentally obtained, we predicted the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot. We therefore attempt to evaluate the effectiveness and validity of $K_e$ in predicting the fatigue life of auto seat belt anchor panel. We first establish finite element models reflecting the actual mechanical behavior of 3 types of seat belt anchor specimens. Using finite element models elaborately established, we then obtain the effective crack driving parameter $K_e$ composed of its ductility -dependent modal components. It is confirmed that the $K_e$ concept successfully predicts the fatigue life of multi-spot welded panel structures represented by auto seat belt anchors here.

Experimental Tests and Analytical Study for the Prediction of the Plastic Moment Capacity of an Unstiffened Top and Seat Angle Connection (무보강 상·하부 ㄱ형강 접합부의 소성휨모멘트 저항능력 예측을 위한 실험 및 해석적 연구)

  • Yang, Jae-Guen;Choi, Jung-Hwan;Kim, Hyun-Kwang;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.547-555
    • /
    • 2011
  • An unstiffened top and seat angle connection is a type of partially restrained connection that is suitable for low- and medium-rise steel buildings. The plastic moment resisting capacity of such connection is needed in practical design, in addition to the accurate prediction of the initial rotational stiffness. Therefore, most of the studies conducted for the mentioned connections were performed to predict the initial stiffness and the plastic moment resisting capacity with varying geometric properties. The main parameters of such experimental tests were the thickness and high-strength bolt gauge distance of AISC LRFD-type A top and seat angle connections. Based on the test results, the analytical model was also proposed in this study. The applicability of the proposed model was verified by comparing the test results from this study with those of other studies.

Promoting Safety Behaviors Among Korean American Students in USA: Evaluation of the Risk Watch$\circledR$ Curriculum

  • Gong, Deukhee;Orpinas, Pamela
    • Korean Journal of Health Education and Promotion
    • /
    • v.20 no.4
    • /
    • pp.79-93
    • /
    • 2003
  • Childhood injuries are the primary cause of death and disability among children aged 5 to 14. Consistent practice of learned safety behaviors can reduce the occurrence of severe injuries among children. However, safety behavior concern is low among Korean-American children specifically and American children, in general. The objective of the study is to evaluate the impact of an unintentional injury prevention curriculum, Risk Watch among Korean-American children. A quasi-experimental design with a nonequivalent control group was used for the designed of the study. Two intervention and two control Korean schools in Atlanta participated in this study. The intervention consisted of weekly lessons in traffic, bicycle, pedestrian, and fire safety. One hundred and two students completed a pre-test and a post-test. The main outcomes were safety behaviors (seat belt use or helmet use), behavioral intentions, and safety knowledge. Analysis of covariance was used for the statistical analyses. Strong intervention effects were found for increasing knowledge of all safety topics in the intervention group. Additionally, statistically significant intervention effects were detected for increasing seat belt and helmet use, as well as behavioral intentions of wearing a seat belt and wearing a helmet, among pre-kindergarten and kindergarten students. For students in grades 1 and 2, intervention effects were found for increasing helmet use. Among students in grades 3 to 8, the intervention group showed statistically significant increases for seat belt use. Limitations of the study and recommendations for modifying and supporting unintentional injury prevention programs for school children are discussed.

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Numerical Study on the Sealing Safety of a Valve Packing in a LPG Cylinder (LPG 용기용 밸브패킹의 누설안전에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.34-39
    • /
    • 2007
  • In this paper, the FEM result has been presented for a sealing safety between a valve packing and a valve seat during a open and close operation in a LPG cylinder. The sealing operation of a LPG valve is completed when the valve packing in which is made by a nylon-66 polymer is to stop a LP gas flow, which flows out from the outlet of a brass pipe in a LPG cylinder. The contact sealing mechanism of the valve may be classified by a flat contact of an unused valve packing and a circular groove contact of an used valve packing in a current LPG valve. Based on the FEM and experimental investigations the sealing force, 4.9 MPa for a flat contact mode of the unused valve packing is a little high compared to that of the used valve packing, which shows a circular groove contact geometry against a valve seat. But these sealing pressures for two contact modes are very low compared to the ultimate strenath 83 MPa of the nylon-66 and this may be designed with a excess strength of the valve.

  • PDF

A Convergence Study through Strength Analysis of Side Bolster (사이드 볼스터의 강도 해석을 통한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.169-174
    • /
    • 2020
  • Side bolster is a part of the vehicle seat that holds the passenger's body from the side to make it more stable when the passenger is seated in the seat. In this study, the structural and fatigue analyses of the side bolsters at a car seat were carried out with two models of A and B. The heavily loaded parts, the damage by fatigue at driving a car and the difference of durability due to the structure were examined and the distributions of stress and deformation, and the fatigue lives were seen. Also, the strength and durability were examined. This study result is thought to be devoted to decrease the fatigue damage and increase the fatigue life and durability according to the design of bolster. This result is able to improve the product by applying the design of automotive side bolster practically. And it is thought to be the advantage to apply this study result to the convergence research with esthetic sense.

Study on the Design and Analysis of a 4-DOF Robot for Trunk Rehabilitation (체간 재활을 위한 4-DOF 로봇의 설계 및 분석에 관한 연구)

  • Eizad, Amre;Pyo, Sanghun;Lee, Geonhyup;Lyu, Sung-Ki;Yoon, Jungwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.41-51
    • /
    • 2020
  • This paper presents the development of a robotic system for rehabilitation of the trunk's ability to maintain postural control under different balance conditions. The system, developed with extensive input from rehabilitation and biomedical engineering experts, consists of a seat mounted on a robotic mechanism capable of moving it with four degrees of freedom (3 rotational and 1 translational). The seat surface has built in instrumentation to gauge the movements of the user's center of pressure (COP) and it can be moved either to track the movements of the COP or according to operator given commands. The system allows two types of leg support. A ground mounted footrest allows participation of legs in postural control while a seat connected footrest constrains the leg movement and limits their involvement in postural control. The design evolution over several prototypes is presented and computer aided structural analysis is used to determine the feasibility of the designed components. The system is pilot tested by a stroke patient and is determined to have potential for use as a trunk rehabilitation tool. Future works involve more detailed studies to evaluate the effects of using this system and to determine its efficacy as a rehabilitation tool.

A Preliminary Study on the Physical Environment Characteristics of Free Shuttle Bus Interior for Vulnerable Pedestrian. - Focusing on the Characteristics of the Elderly - (교통약자용 무료 셔틀버스 실내의 물리적 환경 특성 예비연구 - 노인의 특성을 중심으로 -)

  • Jeong, Sang-Won;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.1
    • /
    • pp.156-164
    • /
    • 2018
  • This study analyzed the characteristics of Physical Environment of existing free shuttle bus Interior centered on elderly people who frequently use free shuttle buses. The purpose of this study is to provide basic data that can be used for improvement of existing free shuttle buses. In the case of the old type, in terms of accessible design, the middle entrance is not normally opened except the wheelchair occupant, so that the entrance of the front wheel is always used. Therefore, most elderly people go to the back seat and travel distance is twice longer. In addition, many stairs caused frequent inconveniences for boarding. In the case of the new type, it is planned to be a low-floor type, and various types of safety rods and handles, pictograms for enhancing the information convenience are well-equipped, and the measured value of the overall design characteristic is high. However, in the case of mental stability, it was confirmed that the seat of the bus is colored with a cold color system and is in a different relationship with the warm color which can feel mental stability. Overall, both old and new shuttle buses lack audiovisual feedback on bus routes and route guidance in terms of Supportive design. Also, since the cleaning tools and other miscellaneous items were left in the room, it became an obstacle to space utilization in terms of adaptable design. In terms of safety, both shuttle buses did not come into view with fire extinguishers shaded by miscellaneous items. Therefore, immediate action is unlikely in case of emergency. This problem should be resolved quickly.