• Title/Summary/Keyword: Seat positions

Search Result 38, Processing Time 0.023 seconds

A Study on the Neck Injury Criteria Using BioRID-II during Very Low Speed Rear-end Collision (초저속 후방 추돌시 BioRID-II를 이용한 목 상해 지수 측정에 관한 연구)

  • Hong, Seungjun;Ryu, Hankyu;Kim, Youngeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.54-61
    • /
    • 2013
  • Although typically classified as AIS 1, whiplash injuries continue to represent a substantial social problem with associated costs estimated at over $1 billion annually. The primary objective of this study was to determine the effects of seat positions(seatback angle, headrest height) on risk for whiplash injury in very low speed(${\Delta}V$=4~10km/h) rear-end impact. To accomplish this, rear impact seat carriage tests and simulations were conducted using the BioRID-II dummy seated in a mass production seat, which allowed for the adjustment of seatback angle and headrest height. Neck injury criteria(NIC, Nkm) were then compared for different ${\Delta}V$ and seat positions.

The Effect of Seat Surface Inclination on Respiratory Function and Speech Production in sitting (앉은 자세에서 의자 표면 경사도가 호흡기능과 구어 산출에 미치는 영향)

  • Shin, Hwa-Kyung;Kim, Hye-Su;Lee, Ok-Bun
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the difference between respiratory function and speech production, according to the seat surface inclination while in the sitting position. Methods: Respiratory function (FVC, FEV1) and speech production (inspiratory frequency, unit reading time, paragraph reading time) were measured in 3 sitting conditions: horizontal seat surface, seat surface tilted forward 15 degrees, and seat surface tilted backward 15 degrees. Results: We found that the mean values of FVC and FEV1 were statistically significant different according to three types of sitting positions (p<0.05). The following result was observed: forward tilted sitting > horizontal sitting > backward tilted sitting. There was no significant difference in speech production between the different positions. Respiratory function and speech production had a significantly negative correlation in the forward tilted condition and the backward tilted condition. Conclusion: This finding suggests that the seat surface inclination have an effect on respiratory function. Especially, forward tilted sitting may be an effective posture that may help increases the respiratory function.

A Study on the Optimum Driving Posture for Designing Comfortable Driving Workstation (안락한 운전좌석 설계를 위한 최적 운전자세 연구)

  • 권규식;이정우;박세진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.1-8
    • /
    • 1999
  • This study was conducted to collect data concerning the preferred driving postures and adopted seat adjustment levels and to grasp relationships among drivers' body sizes, postural angles, and adopted seat positions and angles. Also optimum driving posture and seat adjustment level estimation models were constructed. An experiment was conducted to investigate observed optimum driving posture, and seat adjustment level. Thirty-six subjects (male=20, female=16) was selected to include a wide range of percentiles in the dimensions important for automotive driving workstation design and to be representative of the automotive driving population in Korea. New guidelines and estimation models for optimum postural comfort were developed. There were significant differences between male and female in postural angles but not in seat adjustment levels. Taller subjects preferred a more open and reclined posture. Estimation models enable us to estimate the quantitative optimum driving posture and seat adjustment level with some drivers' physical dimensions.

  • PDF

Simulation of Dynamic Characteristics of Agricultural Tractor (III) - Effect of Design Parameters on Seat Vibrations - (농용 트랙터의 동특성 시뮬레이션 (III) - 주요 설계 변수가 좌석 진동에 미치는 영향 -)

  • 박홍제;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • Using the dynamic model and simulation program TDA developed in the previous paper, effects of design parameters of an agricultural tractor-trailer system on its vertical seat vibrations were investigated. The tractor-trailer system was excited by traversing over a half-sine bump. The excitation frequencies were determined by traveling velocity of the tractor and a half-sine bump selected appropriately. TDA predicted the autospectra of the vertical seat accelerations with different values of design parameters and compared them to analyze their effects. The design parameters included positions of engine, cab, and seat mountings as well as their dynamic properties. The results of this study suggested guidelines with which an improved structure of tractor may be developed in the early stage of design for a better ride quality.

  • PDF

Design of Butterfly Valve Disk to Minimize Interference at Opening and Closing (개폐 시 최소 간섭을 갖는 버터플라이 밸브 디스크의 설계)

  • Choi Young;Boo Kwangsuk;Yeo Hong-Tae;Hur Kwando;Kim Hokwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.140-145
    • /
    • 2004
  • In this study, the design and analysis of a butterfly valve disk was performed to minimize the rubbing between the disk and the seat at opening and closing. The butterfly valve has double eccentric structure and the contact surface between the disk and the seat is a conical surface. At the instant of opening and closing the valve by the rotation of disk, the positions of zero contact point are changed. Also, if the cone surface is cut in the perpendicular direction to the rotation axis of the valve, the contour of cutting section is hyperbolic. Therefore minimum distance between the origin of the eccentric axis and the hyperbolic curve goes to the position of zero contact point. In order to consider the interferences between the disk and the seat, the thermal-structure coupled field analysis was performed by ANSYS.

Usability of Cockpit Design and Musculoskeletal Discomfort in Korean Air Force Fighter Pilots (한국 공군 주력 전투기 조종실의 사용성과 조종사의 근 골격계 불편도에 대한 연구)

  • Byun, Seong-Nam;Lee, Dong-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.100-110
    • /
    • 1999
  • The objectives of this study are twofold: (1) to evaluate the cockpit of three Korean air force fighters such as F-4, F-5, and F-16 in an ergonomic perspective and (2) to measure the musculoskeletal discomfort of the fighter pilots. For the study, 369 air force pilots from 7 squadrons were surveyed. The study shows that the cockpit design of F-16 is superior to the others. However, F-4 is the worst among them. Statistical analyses reveal that the seat in the cockpit raised the most complaints, regardless of types of fighter planes. The main problems with the seat included inappropriate designs of the backrest angle, seat cushioning, and parachute harness. Also frequently cited are various control switches, control stick, rudder pedal, and the throttle. That these items lack human integration is found in remote positions and improper dimensions. The implications of these findings are discussed. The self-reported musculoskeletal complaints show that the main discomfort is on the back and neck. Also, the buttocks, shoulders, and the legs/knees are common sites of discomfort. A stepwise regression analysis shows that the back discomfort, is mainly caused by the use of the seat, rudder pedal, control stick, and switches. A Spearman rank correlation coefficient test also reveals that job dissatisfaction of the pilots is related to the complaints with the cockpit and musculoskeletal discomfort. These findings suggest that more comprehensive studies for cockpit design in the aspects of functional anthropometry of Korean pilots are needed to reduce the musculoskeletal discomfort.

  • PDF

Human Vibration Measurement for Passenger Car and Seat Characteristics Optimization (승용차에서의 인체 진동 측정 및 시트 특성 최적설계)

  • Cho, Young-Gun;Yoon, Yong-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1155-1163
    • /
    • 1999
  • This study deals with the vibration ride quality for passenger car when running on straight highway at the speed of 70km/h. Ten accelerations were measured at four positions, three axes each at the feet, hip, and head, and one axis at the back. Five seats that have different static sponge stiffness were used, and two subjects were participated. These accelerations were analyzed to produce the ride values such as component ride value and overall ride value. It was hard to see the difference of ride value by the change of sponge stiffness. However we could rank the ride quality by the total vibration exposed to passengers. From the transfer function between the hip and the foot, the fundamental mode was observed to be around 5.8Hz. Also the transfer function between the head and hip was studied. The optimal damping ratio of the seat was calculated according to the seat natural frequency with human weighting filter which makes the optimal damping ratio different from that without weighting filter.

The Effect of Pelvic Inclination on Voice Production in sitting (앉은 자세에서 골반 경사도가 음성에 미치는 영향)

  • Choe, Jeong Hui
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 2015
  • The purpose of this study was to evaluate the difference voice production, according to the pelvic inclination while in the sitting position. Measure the sound produced(pitch) in three positions with the Praat program. position: anterior tilt position, posterior tilt position, neutral position(seat surface tilted 15 degrees). We found that the mean values of pitch were statistically significant different according to three types of sitting positions (p<0.05). The following result was observed: anterior tilt position > posterior tilt position > neutral position. There was significant difference in the neutral position. This finding suggests that the seat surface inclinations have an effect on speech production. Especially, neutral position may be an effective posture that may help increases the speech production.

Comparison of Severity of Occupant Injuries due to Different Airbag TTF with Occupant's Abnormal Seating Conditions while Driving an Automated Driving Vehicle (자율주행자동차에서 비정상 착석상태로 운전 시 에어백 작동시간(TTF)에 따른 승객 상해도 비교)

  • Park, Jiyang;Youn, Younghan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2019
  • According to the development of autonomous vehicles worldwide, the driver's posture may not be a normal posture but the various seating positions. Recently, a numbers of research activities has been focused to protect of driver and passengers in various seating positions as well as seating postures. In this paper, the occupant injury severity was evaluated with different seat positions, seatback angles and TTF times.

h Study of Occupant Responses in KHST Croshworthiness (충돌사고 유형에 따른 KHST의 승객거동에 관한 연구)

  • 윤영한;구정서
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.398-404
    • /
    • 1999
  • Safety of passengers in the Korean High Speed Train, KHST, was evaluated under the different accident scenarios. Preliminary occupant analysis has been performed based on the TGV-K train seat characteristics. The influence of the vehicle deceleration and passenger type, seating positions, effectiveness of compartmentalization have been evaluated in terms of occupant injury criteria. This study is the final result of the occupant analysis of KHST project at 1st stage 3rd year.

  • PDF