• Title/Summary/Keyword: Seasonal effects

Search Result 598, Processing Time 0.024 seconds

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Neutralization of Acidity and Ionic Composition of Rainwater in Taean (태안지역 강우의 산성도 중화 및 화학성 평가)

  • Lee, Jong-Sik;Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Mann;Jung, Tae-Woo;Jung, Im-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.336-340
    • /
    • 2009
  • The issue of acid precipitation and related environmental problems in East Asia has been emerging. To evaluate the acidity and chemical characteristics of rainwater in Korea, its chemical properties during cultivation season from April to October were investigated at Taean in 2007. Also, to estimate the contribution of ions on its acidity, ion composition characteristics and neutralization effects by cation ions were determined. The ion balance between cations and anions values showed high correlation. The mean values of pH and EC were 4.9 and $32.9{\mu}S\;cm^{-1}$, respectively. The EC of rainwater showed seasonal characteristic, which was $91.4{\mu}S\;cm^{-1}$ with relatively low rainfall compared with other monitoring periods. $Na^+$ was the main cation followed by $NH_4{^+}$ > $Ca^{2+}$ > $H^{+}$ > $Mg^{2+}$ > $K^+$. Among these ions, $Na^{+}$ and $NH_4{^+}$ covered over 70% of total cations. In the case of anion, the order was $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^{-}$. The mean value of sulfate, which is main anion component in the samples was $152.1{\mu}eq\;L^{-1}$. Also, 90% of soluble sulfate in rainwater was $nss-SO_4{^{2-}}$(non-sea salt sulfate). With fractional acidity and theoretical acidity of rainwater samples, $NH_4{^+}$ and $Ca^{2+}$ contributed greatly in neutralizing the rain acidity.

The Effects of Shifting Seeding Dates on Botanical Composition and Productivity under the Climate Change in Oversown Mixed Pasture, Middle Region of South Korea (중부지역에서 기후변화에 따른 파종시기 이동이 겉뿌림 초지의 식생변화 및 생산성에 미치는 영향)

  • Jung, Jeong Sung;Choi, Ki Choon;Kim, Won Ho;Kim, Hyeon Shup;Choi, Gi Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • This study was conducted to investigate the effect of seeding dates on grassland productivity and botanical composition in oversown pasture located in Cheonan of South Korea. Four treatment groups were established based on the seeding dates: 18th August, 1st September, 15th September and 29th September. Evaluation of seasonal changes in botanical composition of pasture showed that the highest ratios of grass in 18th August and 1st September (pasture species 93% and weeds 7%) and the lowest in 15th September (pasture species 75% and weeds 25%). In the plant length, there is no significantly different in 5% probability level. In the total dry matter yield of grass, 18th August ($13,362kg\;ha^{-1}$) and 1st September ($13,988kg\;ha^{-1}$) were higher than 15th September ($11,883kg\;ha^{-1}$) and 29th September ($11,459kg\;ha^{-1}$). The findings of the this study suggest that seeding by early September the most desirable results for botanical composition and grassland productivity in oversown pasture, Cheonan of South Korea.

Variation Analysis of Sea Surface Temperature in the East China Sea during Summer (동중국해에서 하계 표층수온의 변화 분석)

  • Park, GwangSeob;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.953-968
    • /
    • 2018
  • In order to understand the change of surface water temperature in the East China Sea (ECS), this study analyzed the relationship between sea surface temperature (SST), air temperature (AT) and heat flux using satellite and model reanalysis data from 2003 to 2017. SST in the ECS showed the lowest (average : $13.72^{\circ}C$) in March and the highest (average : $28.12^{\circ}C$) in August. AT is highly correlated with SST and shows a similar seasonal change. In August, SST is higher than AT and then continuously higher than AT until winter. To analyze the change of the summer SST in the ECS, we used the SST anomaly value in August to classify the periods with positive (04', 06', 07', 13', 16', 17') and negative (03', 05', 08', 09', 10', 11', 12', 14', 15') values. Spatial similarity between the two periods indicates that SSTs are relatively larger variations in the northern part than in the southern part, and in the western part than in the eastern part in the study area. AT and net heat flux values also show similar changes with SST. However, the periods of the positive SST anomaly have the relatively increasing SST, AT and heat flux values compared to the periods of the negative SST anomaly in the summer season of the ECS. Although the change of SST in the summer season generally well correlates with AT, there were the periods when it was different from general trends between SST and AT (10', 12', 15', 16'). SST in August 2010 and 2012 decreased by $0.5^{\circ}C$ from AT. It suggests that the decreasing SST was considered to be caused by the effects of the typhoon passing through the study area. In August 2015, AT was relatively lower than SST (> $0.5^{\circ}C$), which is might be weakening of the East Asian Summer Monsoon. In August 2016, SST and AT show the highest values during the whole study periods, but SST is higher than AT (> $1^{\circ}C$). From satellite and heat flux data, the variations of SST have been shown to be relatively higher in the area of the expansion Changjiang Diluted Water (CDW) originated from the China coast. More research is needed to analyze this phenomenon, it is believed as not only the effect of rising AT but also the expansion of the low-salinity water.

The Continuous Measurement of CO2 Efflux from the Forest Soil Surface by Multi-Channel Automated Chamber Systems (다중채널 자동챔버시스템에 의한 삼림토양의 이산화탄소 유출량의 연속측정)

  • Joo, Seung Jin;Yim, Myeong Hui;Ju, Jae-Won;Won, Ho-yeon;Jin, Seon Deok
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 2021
  • Multichannel automated chamber systems (MCACs) were developed for the continuous monitoring of soil CO2 efflux in forest ecosystems. The MCACs mainly consisted of four modules: eight soil chambers with lids that automatically open and close, an infrared CO2 analyzer equipped with eight multichannel gas samplers, an electronic controller with time-relay circuits, and a programmable logic datalogger. To examine the stability and reliability of the developed MCACs in the field during all seasons with a high temporal resolution, as well as the effects of temperature and soil water content on soil CO2 efflux rates, we continuously measured the soil CO2 efflux rates and micrometeorological factors at the Nam-san experimental site in a Quercus mongolica forest floor using the MCACs from January to December 2010. The diurnal and seasonal variations in soil CO2 efflux rates markedly followed the patterns of changes in temperature factors. During the entire experimental period, the soil CO2 efflux rates were strongly correlated with the temperature at a soil depth of 5 cm (r2 = 0.92) but were weakly correlated with the soil water content (r2 = 0.27). The annual sensitivity of soil CO2 efflux to temperature (Q10) in this forest ranged from 2.23 to 3.0, which was in agreement with other studies on temperate deciduous forests. The annual mean soil CO2 efflux measured by the MCACs was approximately 11.1 g CO2 m-2 day-1. These results indicate that the MCACs can be used for the continuous long-term measurements of soil CO2 efflux in the field and for simultaneously determining the impacts of micrometeorological factors.

Evaluation of Microbial Contamination in the Manufacturing Process of Non-Heated Frozen Rice Cakes (비가열 냉동떡의 제조공정에 대한 미생물 오염도 평가)

  • Yong-Sik, Yoon;Eun-In, Yang;Young-Soo, Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.400-410
    • /
    • 2022
  • This study was performed to analyze the microbial contamination levels of three non-heated rice cake manufacturers in terms of seasonal manufacturing process and to investigate the effects of summertime soaking on contamination levels and temperature-controlled soaking in water on reduction in microbial levels. The total aerobic bacteria (TAB) ranged from 2.69 log CFU/g to 5.08 log CFU/g in the produce, but the microbial contamination increased sharply during soaking. The levels of TAB and coliforms during summer soaking were 7.01 and 3.96 log CFU/g, respectively, and this was significantly higher than those in other seasons. The contamination level was high in the subsequent freezing, with the TAB level (6.24 log CFU/g) exceeding the legal standard. The temperature of soaking water in summer increased from 19.1℃ to 26.8℃ after 12 h of soaking. The microbial contamination was significantly high commensurate with increased soaking time, and the TAB level in the frozen process exceeded the legal standard from 9 h of soaking. The use of ice packs to prevent the increase in temperature of the soaking water in summer resulted in maintenance of temperature at 20.1℃ for up to 12 h. The average TAB value in the freezing process was 4.42 log CFU/g after 12 h of soaking, and this is 1.77 log CFU/g lower than that before. Based on these results, it was determined that controlling the soaking time and water temperature are essential for the production of a safe unheated frozen rice cake. The safety of the HACCP system could be established by applying these preventive management standards.

The Effect of Application of Cattle Slurry on Dry Matter Yield and Feed Values of Tall Fescue (Festuca arundinacea Schreb.) in Uncultivated Rice Paddy (유휴 논 토양에서 액상 우분뇨의 시용이 톨 페스큐의 건물수량과 사료가치에 미치는 영향)

  • Jo, Ik-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.1
    • /
    • pp.9-20
    • /
    • 2007
  • This experiment was conducted to investigate effects of application of diluted and undiluted cattle slurry with water on seasonal and annual dry matter yields and feed values of tall fescue in the uncultivated rice paddy and it was compared with chemical fertilizer in order to determine optimal application season and dilution level of cattle slurry. When diluted or undiluted cattle slurry with water was applied to uncultivated rice paddy, annual dry matter yields showed 11.31 to 14.81 ton DM/ha (average 13.13 ton DM/ha) for diluted and 10.57 to 12.51 ton DM/ha (average 11.50 ton DM/ha) for undiluted cattle slurries, these had a higher dry matter yield than those of no fertilizer (9.21 ton DM/ha). Furthermore, separate application of early spring and summer (SA plots), separate application of early and late spring, and summer (SUA plots) fur undiluted cattle slurries, and whole application of spring (DS plots), separate application of early spring and summer (DSA plots), separate application of early and late spring, and summer (DSUA plots) for diluted cattle slurries were significantly (P<0.05) higher for annual dry matter yield than no fertilizer plots. Plots applied chemical fertilizer with nitrogen (N), phorphorus (P) and potassium (K) had 15.38 ton DM/ha annually, resulted in significantly (P<0.05) higher DM yield than chemical fertilizer containing P and K, and no fertilizer plots. Moreover, average annual DM yield for the chemical fertilizer with P and K was lower than that of cattle slurry applications. The efinciency of DM production for mineral nitrogen of chemical fertilizers was annually average 31.3 kg DM/kg N. In terms of cutting time of tall fescue, it was lowered in the order of 2nd growth followed by 1st and 3rd growth. However, efficiencies of annual DM production of nitrogen for diluted and undiluted cattle slurries were 26.1 and 15.3 kg DM/kg N, respectively, especially, highest in 2nd growth. While, efficiencies of DM production for cattle slurry versus for mineral nitrogen were 48.9 (undiluted) and 83.4% (diluted), respectively. For annual crude protein (CP) contents of tall fescue, aqueous cattle slurry applications showed 9,9 to 11.6%, which were significantly (P<0.05) higher than no fertilization (9.5%) and chemical fertilizer (9.0 to 9.8%), but annual average NDF and ADF contents were lowest in no fertilization. On the contrary, relative feed value (RFV) and total digestible nutrients (TDN) of no fertilizer plots were significantly (P<0.05) higher than the other plots. The application of cattle slurry and their dilution significantly increased yields of crude protein and total digestible nutrients compared with no and/or P and K fertilizers (P<0.05). These trends were much conspicuous in water-diluted cattle slurries applied in the early and late spring and summer, separately (DSUA plots).

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF