DOI QR코드

DOI QR Code

The Continuous Measurement of CO2 Efflux from the Forest Soil Surface by Multi-Channel Automated Chamber Systems

다중채널 자동챔버시스템에 의한 삼림토양의 이산화탄소 유출량의 연속측정

  • 주승진 (대기환경모델링센터) ;
  • 임명희 (대기환경모델링센터) ;
  • 주재원 (대기환경모델링센터) ;
  • 원호연 (국립생태원 보전평가연구본부) ;
  • 진선덕 (국립생태원 보전평가연구본부)
  • Received : 2020.12.27
  • Accepted : 2021.01.15
  • Published : 2021.03.31

Abstract

Multichannel automated chamber systems (MCACs) were developed for the continuous monitoring of soil CO2 efflux in forest ecosystems. The MCACs mainly consisted of four modules: eight soil chambers with lids that automatically open and close, an infrared CO2 analyzer equipped with eight multichannel gas samplers, an electronic controller with time-relay circuits, and a programmable logic datalogger. To examine the stability and reliability of the developed MCACs in the field during all seasons with a high temporal resolution, as well as the effects of temperature and soil water content on soil CO2 efflux rates, we continuously measured the soil CO2 efflux rates and micrometeorological factors at the Nam-san experimental site in a Quercus mongolica forest floor using the MCACs from January to December 2010. The diurnal and seasonal variations in soil CO2 efflux rates markedly followed the patterns of changes in temperature factors. During the entire experimental period, the soil CO2 efflux rates were strongly correlated with the temperature at a soil depth of 5 cm (r2 = 0.92) but were weakly correlated with the soil water content (r2 = 0.27). The annual sensitivity of soil CO2 efflux to temperature (Q10) in this forest ranged from 2.23 to 3.0, which was in agreement with other studies on temperate deciduous forests. The annual mean soil CO2 efflux measured by the MCACs was approximately 11.1 g CO2 m-2 day-1. These results indicate that the MCACs can be used for the continuous long-term measurements of soil CO2 efflux in the field and for simultaneously determining the impacts of micrometeorological factors.

삼림 생태계에서 토양 CO2 유출량의 연속적인 모니터링을 위한 다중채널 자동챔버시스템 (MCACs)을 개발하였다. MCACs는 자동개폐 덮개가 있는 8개의 토양챔버, 8개의 다중채널 가스샘플러를 장착한 적외선 CO2 농도 분석기, 시간 릴레이 회로를 갖춘 전자 컨트롤러, 프로그래밍이 가능한 로직용 자료수집장치로 구성되었다. 사계절 장기간에 걸쳐 야외 현장에서 MCACs의 안전성과 신뢰도를 조사하고, 높은 시간분해능으로 현장 테스트에서 얻은 온도와 토양수분 함량이 토양 CO2 유출에 미치는 효과들을 파악하기 위해, 2010년 1월부터 12월 사이의 기간 동안 남산의 신갈나무림 실험지소에서 MCACs를 사용하여 토양 CO2 유출속도와 미기상 요인들을 지속적으로 측정하였다. 토양 CO2 유출속도의 일변화 및 계절적인 변화는 현저하게 온도 요인의 경향을 따랐다. 전체 실험 기간 동안에 토양 CO2 유출속도는 5 cm 깊이의 토양온도와 밀접한 상관관계 (r2 = 0.92)를 보였으나 토양수분 함량과는 약한 상관관계 (r2 = 0.27)를 나타냈다. 남산 신갈나무림에서 온도에 대한 토양 CO2 유출량의 연간 민감도(Q10 수치)는 2.23~3.0의 범위에 달했고, 다양한 온대지역의 낙엽활엽수림에 대한 다른 연구들과 일치하였다. MCACs에 의해 측정된 연평균 토양 CO2 유출량은 약 11.1 g CO2 m-2 day-1이었다. 이 결과들은 MCACs가 야외 현장에서 토양 CO2 유출량의 연속적인 장기측정과 동시에 미기상 요인들의 영향을 결정하는데 유용한 시스템임을 나타낸다.

Keywords

References

  1. Bond-Lamberty, B., Wang, C., and Gower, S. 2004. A global relationship between the heterotrophic and autotrophic components of soil respiration. Global Change Biology 10(10): 1756-1766. https://doi.org/10.1111/j.1365-2486.2004.00816.x
  2. Borken, W., Savage, K., Davidson, E.A., and Trumbore, S.E. 2006. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology 12(2): 177-193. https://doi.org/10.1111/j.1365-2486.2005.001058.x
  3. Buchmann, N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry 32: 1625-1635. https://doi.org/10.1016/S0038-0717(00)00077-8
  4. Chae, N., Kim, J., Kim, D., Lee, D., Kim, R., Ban, J., and Son, Y. 2003. Measurement of soil CO2 efflux using a closed dynamic chamber system. Korean Journal of Agricultural and Forest Meteorology 5(2): 94-100.
  5. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., and Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187. https://doi.org/10.1038/35041539
  6. Davidson, E.A., Belk, E., and Boone, R.D. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in temperate mixed hardwood forest. Global Change Biology 4: 217-227. https://doi.org/10.1046/j.1365-2486.1998.00128.x
  7. Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., and Wisniewski, J. 1994. Carbon pools and flux of global forest ecosystems. Science 263: 185-190. https://doi.org/10.1126/science.263.5144.185
  8. Falge, E., Balodocchi, D., Tenhunen, J., Aubinet, M., Bakwind, P., Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K.J., Elbers, J.A., Goldstein, A.H., Grelle, A., Granier, A., Guamundssonm, J., Hollinger, D., Kowalski, A.S., Katul, G., Law, B.E., Malhi, Y., Meyers, T., Monson, R.K., Munger, J.W., Oechel, W., Paw, U.K.T., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Valentini, R., Wilson, K., and Wofsy, S. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113: 53-74. https://doi.org/10.1016/S0168-1923(02)00102-8
  9. Fang, C., Smith, P., Moncrieff, J.B., and Smith, J.U. 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433: 57-59. https://doi.org/10.1038/nature03138
  10. Hanson, P.J., Edwards, N.T., Garten, C.T., and Andrews, J.A. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48: 115-146. https://doi.org/10.1023/A:1006244819642
  11. IPCC 2001. A report of working group of the intergovernmental panel on climate change, climate change 2001. The Scientific Basis. Cambridge University Press, Cambridge, UK.
  12. IPCC 2007. Fourth assessment report of the intergovernmental panel on climate change, climate change 2007. Cambridge University Press, Cambridge, UK.
  13. Jassal, R.S. and Black, T.A. 2006. Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: Theory and practice. Agricultural and Forest Meteorology 140: 193-202. https://doi.org/10.1016/j.agrformet.2005.12.012
  14. Joo, S.J., Park, M.S., Kim, G.S., and Lee, C.S. 2011. CO2 flux in a cool-temperate deciduous forest (Quercus mongolica) of Mt. Nam in Seoul, Korea. Journal of Ecology and Field Biology 34(1): 95-106. https://doi.org/10.5141/JEFB.2011.012
  15. Kang, S.K., Doh, S.Y., Lee, D.S., Lee, D.W., Jin, V.L and Kimball, J.S. 2003. Topographic and climate controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology 9: 1427-1437. https://doi.org/10.1046/j.1365-2486.2003.00668.x
  16. Kosugi, Y., Tanaka, H., Takahashi, S., Matsuo, N., Ohte, N., Shibata, S., and Tani, M. 2005. Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agricultural and Forest Meteorology 132: 329-343. https://doi.org/10.1016/j.agrformet.2005.08.010
  17. Landsberg, J.J. and Gower, S.T. 1997. Application of physiological ecology to forest management. Academic Press, New York, USA.
  18. Law, B.E., Kelliher, F.M., Baldocchi, D.D., Anthoni, P.M., Irvine, J., Moore, D., and Van Tuyl, S. 2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agricultural and Forest Meteorology 110: 27-43. https://doi.org/10.1016/S0168-1923(01)00279-9
  19. Lee, C.S., Cho, Y.C., Shin, H.C., Lee, C.H., Lee, S.M., Seol, E.S., Oh, W.S., and Park, S.A. 2006. Ecological characteristics of Korean red pine (Pinus densiflora S. et Z.) forest on Mt. Nam as a long term ecological research (LTER) site. Journal of Ecology and Field Biology 29: 593-602. (in Korean) https://doi.org/10.5141/JEFB.2006.29.6.593
  20. Lee, K.J., Won, H.Y., and Mun, H.T. 2012. Contribution of root respiration to soil respiration for Quercus acutissima forest. Korean Journal of Environment and Ecology 26(5): 780-786. (in Korean)
  21. Liang, N., Nakadai, T., Hirano, T., Qu, L., Koike, T., Fujinuma, Y., and Inoue, G. 2004. In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology 123: 97-117. https://doi.org/10.1016/j.agrformet.2003.10.002
  22. Lloyd, J. and Taylor, J.A. 1994. On the temperature dependence of soil respiration. Functional Ecology 8: 315-323. https://doi.org/10.2307/2389824
  23. Luo, Y. and Zhou, X. 2006. Soil Respiration and the Environment. Academic Press, San Diego, California, USA.
  24. Moon, H.S. 2004. Soil respiration in Pinus densiflora, Quercus variabilis and Platycarya strobilacea stands in Jinju, Gyeongnam province. Journal of Ecology and Field Biology 27(2): 87-92. (in Korean)
  25. Nakane, K. 2001. Quantitative evaluation of atmospheric CO2 sink into forest soils from the tropics to the boreal zone during the past three decades. Ecological research 16: 671-685. https://doi.org/10.1046/j.1440-1703.2001.00438.x
  26. Ohashi, M., Gykusen, K., and Daito, A. 1999. Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an open-flow chamber method. Forest Ecology and Management 123: 105-114. https://doi.org/10.1016/S0378-1127(99)00020-1
  27. Oikawa, T. 1990. Modeling primary production of plant communities. Physiological Ecology of Japan 27: 63-80.
  28. Raich, J.W. and Schlesinger, W.H. 1992. The global carbon dioxide efflux in soil respiration and its relationship to vegetation and climate. Tellus 44b: 81-99. https://doi.org/10.3402/tellusb.v44i2.15428
  29. Saigusa, N., Yamamoto, S., Murayama, S., Kondo, H., and Nishimura, N. 2002. Gross primary production and net ecosystem production of a cool-temperate deciduous forest estimated by the eddy covariance method. Agricultural and Forest Meteorology 112: 203-215. https://doi.org/10.1016/S0168-1923(02)00082-5
  30. Singh, J.S. and Gupta, S.R. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Botanical Review 43: 449-528. https://doi.org/10.1007/BF02860844
  31. Suh, S.U., Min, Y.K., and Lee, J.S. 2005. Seasonal variation of contribution of leaf-litter decomposition rate in soil respiration in temperate deciduous forest. Korean Journal of Agricultural and Forest Meteorology 7(1): 57-66. (in Korean)
  32. Wigley, T.M.S. and Schimel, D.S. 2000. The carbon cycle. Cambridge University Press, Cambridge, UK. pp. 7-49.
  33. Yi, M.J. 2003. Soil CO2 evolution in Quercus variabilis and Q. mongolica forests in Chunchon, Kangwon province. Journal of Korean Forestry Society 92(3): 236-269. (in Korean)
  34. Yi, M.J., Son, Y., Jin, H.O., Park, I.H., Kim, D.Y., Kim, Y.S., and Shin, D.M. 2005. Belowground carbon allocation of natural Quercus mongolica forests estimated from litterfall and soil respiration measurements. Korean Journal of Agricultural and Forest Meteorology 7(3): 227-234. (in Korean)