DOI QR코드

DOI QR Code

Development of Surface Velocity Measurement Technique without Reference Points Using UAV Image

드론 정사영상을 이용한 무참조점 표면유속 산정 기법 개발

  • 이준형 (명지대학교 토목환경공학과) ;
  • 윤병만 (명지대학교 토목환경공학과) ;
  • 김서준 (주식회사 하이드로셈)
  • Received : 2020.12.21
  • Accepted : 2020.12.24
  • Published : 2021.03.31

Abstract

Surface image velocimetry (SIV) is a noncontact velocimetry technique based on images. Recently, studies have been conducted on surface velocity measurements using drones to measure a wide range of velocities and discharges. However, when measuring the surface velocity using a drone, reference points must be included in the image for image correction and the calculation of the ground sample distance, which limits the flight altitude and shooting area of the drone. A technique for calculating the surface velocity that does not require reference points must be developed to maximize spatial freedom, which is the advantage of velocity measurements using drone images. In this study, a technique for calculating the surface velocity that uses only the drone position and the specifications of the drone-mounted camera, without reference points, was developed. To verify the developed surface velocity calculation technique, surface velocities were calculated at the Andong River Experiment Center and then measured with a FlowTracker. The surface velocities measured by conventional SIV using reference points and those calculated by the developed SIV method without reference points were compared. The results confirmed an average difference of approximately 4.70% from the velocity obtained by the conventional SIV and approximately 4.60% from the velocity measured by FlowTracker. The proposed technique can accurately measure the surface velocity using a drone regardless of the flight altitude, shooting area, and analysis area.

표면영상유속계는 영상을 이용한 비접촉식 유속계로 최근에는 넓은 범위의 유속 및 유량을 간편하게 측정하기 위해 드론을 이용한 표면유속 측정 연구 또한 수행되고 있다. 하지만 드론을 이용한 표면유속 측정 시 영상 변환 및 화소 당 물리거리 산정을 위해 참조점을 영상에 담아야 하기 때문에 드론의 비행 고도와 촬영 영역에 한계를 가지게 된다. 따라서 드론 영상을 이용한 하천 유속 측정의 강점인 공간적 자유성을 최대한 확보하기 위해 참조점이 필요 없는 표면유속 산정 기법의 개발이 필요하다. 따라서 본 연구에서는 드론의 위치 및 드론 장착 카메라의 제원만을 이용한 무참조점 표면유속 산정 기법을 개발하였다. 본 연구에서 개발한 표면유속 산정 기법의 검증을 위해 안동 하천실험센터에서 표면유속을 산정한 뒤 FlowTracker로 측정한 유속, 기존에 표면유속을 산정하는데 사용하던 참조점을 이용하는 표면유속 산정 기법으로 구한 표면유속과 비교하였다. 비교결과 기존 표면유속 산정 기법으로 구한 유속과는 평균적으로 약 4.70%의 차이를 보였으며, FlowTracker로 측정한 유속과는 평균적으로 약 4.60%의 차이를 보이는 것을 확인하였다. 향후 본 연구에서 개발한 기법을 이용하면 비행고도와 촬영 영역, 분석 영역에 구애받지 않고 효과적으로 드론을 이용하여 표면유속을 측정할 수 있을 것으로 기대한다.

Keywords

References

  1. Detert, M. and Weitbrecht, V. 2015. A low-cost airborne velocimetry system: proof of concept. Journal of Hydraulic Research 53(4): 532-539. https://doi.org/10.1080/00221686.2015.1054322
  2. Detert, M., Huber, F., and Weitbrecht, V. 2016. Unmanned aerial vehicle-based surface PIV experiments at Surb Creek. In, Proceedings of the International Conference on Fluvial Hydraulics (River Flow 2016).
  3. Fujita, I., Muste, M., and Kruger, A. 1998. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of Hydraulic Research 36(3): 397-414. https://doi.org/10.1080/00221689809498626
  4. Fujita, I., Notoya, Y., and Shimono, M. 2015a. Development of aerial STIV applied to videotaped movie from multicopter based on high-accurate image stabilization method. Journal of JSCE, B1 (Water Resources Engineering), 71(4).
  5. Fujita, I., Notoya, Y., and Shimono, M. 2015b. Development of UAV-based river surface velocity measurement by STIV based on high-accurate image stabilization techniques. In, E-proceedings of the 36th IAHR World Congress (Vol. 28).
  6. Kunida, Y., Fujita, I., and Tsubaki, R. 2009. Analysis of flood using video images from a helicopter and shallow water equation based on unstructured grid system. Annual Journal of Hydraulic Engineering 53: 991-996.
  7. Okubo, S. and Fujita, I. 2010. Accuracy of Aerial LSPIV and its application to a flood flow in the Yodo River. In, Proceedings of the JSCE Annual Meeting (Vol. 37, p. 38).
  8. Rantz, S.E. 1982. Measurement and computation of stream-flow (Vol. 2175). US Department of the Interior, Geological Survey.
  9. Takehara, K., Fujita, I., Takano, Y., Etoh, G.T., Aya, S., Tamai, M., Miyamoto, H., and Sakai, N. 2002. An attempt of field measurements of surface flow on a river by helicopter aided image velocimetry. Proceedings of Hydraulic Engineering 46: 809-814. https://doi.org/10.2208/prohe.46.809
  10. Tauro, F., Pagano, C., Phamduy, P., Grimaldi, S., and Porfiri, M. 2015. Large-scale particle image velocimetry from an unmanned aerial vehicle. IEEE/ASME Transactions on Mechatronics 20(6): 3269-3275. https://doi.org/10.1109/TMECH.2015.2408112
  11. Yu, K.K. and Hwang, J.G. 2017. Measurement of surface velocity in open channels using cameras on a drone. Journal of the Korean Society of Hazard Mitigation 17(2): 403-413. (in Korean) https://doi.org/10.9798/KOSHAM.2017.17.2.403