International Journal of Computer Science & Network Security
/
제22권1호
/
pp.225-233
/
2022
The recent outbreak of corona virus (COVID-19) infectious disease had made its forecasting critical cornerstones in most scientific studies. This study adopts a machine learning based time series model - Auto Regressive Integrated Moving Average (ARIMA) model to forecast COVID-19 confirmed cases in Botswana over 60 days period. Findings of the study show that COVID-19 confirmed cases in Botswana are steadily rising in a steep upward trend with random fluctuations. This trend can also be described effectively using an additive model when scrutinized in Seasonal Trend Decomposition method by Loess. In selecting the best fit ARIMA model, a Grid Search Algorithm was developed with python language and was used to optimize an Akaike Information Criterion (AIC) metric. The best fit ARIMA model was determined at ARIMA (5, 1, 1), which depicted the least AIC score of 3885.091. Results of the study proved that ARIMA model can be useful in generating reliable and volatile forecasts that can used to guide on understanding of the future spread of infectious diseases or pandemics. Most significantly, findings of the study are expected to raise social awareness to disease monitoring institutions and government regulatory bodies where it can be used to support strategic health decisions and initiate policy improvement for better management of the COVID-19 pandemic.
Forest biomass is the basis of forest ecosystem. With the rapid development of remote sensing and computer technology, forest biomass estimation using remote sensing data is paid great attention and has acquired great achievements. This article focuses on discussion of methods of forest biomass estimation methods using Terra/MODIS data in Northeast China. The research include: combining the MODIS time series parameters with seasonal characteristics of forest species to identify major forest species; establishing a model to estimate forest biomass based on forest species; analyzing the effects of the existent forest biomass and increasing biomass on terrestrial carbon cycle. This research can help to make clear the mechanism of carbon cycle.
Various analyses were made to investigate the stochastic structure of the daily rainfall in Korea. Records of daily rainfall amounts from 1951 to 1984 at Chinju Metesrological Station were used for this study. Obtained results are as follows : 1. Time series of the daily rainfall at Chinju were positively, serially correlated for the lag as large as one day. 2. Rainfall events, defined as a sequence of consecutive wet days separated by one or more dry days, showed a seasonal variation in the occurrence frequency. 3. The marginal distribution of event characteristics of each month showed significant dif- ferences each other. Events occurred in summer had longer duration and higher magnitude with higher intensity than those of events occurred in winter. 4. There were significant positive correlations among four event characteristics ; dura- tion, magnitude, average intensity, and maximum intensity. 5. Correlations among the daily rainfall amounts within an event were not significant in general. 6. There were no consistant significancy in identity or difference between the distribu- tions of daily rainfall amounts for different days within events. 7. Above mentioned characteristics of daily rainfall time series must be considered in building a stochastic model of daily rainfall.
In this paper, weekly maximum power demand forecasting method in consideration of temperature estimation using a time series model was presented. The method removing weekly, seasonal variations on the load and irregularities variation due to unknown factor was presented. The forecasting model that represent the relations between load and temperature which get a numeral expected temperature based on the past 30 years(1961~1990) temperature was constructed. Effect of holiday was removed by using a weekday change ratio, and irregularities variation was removed by using an autoregressive model. The results of load forecasting show the ability of the method in forecasting with good accuracy without suffering from the effect of seasons and holidays. Percentage error load forecasting of all seasons except summer was obtained below 2 percentage. (author). refs., figs., tabs.
최근 일별 최대 전력수요 예측은 전력설비 계획 및 운용에 매우 중요한 사안으로 주목받고 있다. 본 연구는 일별 최대 전력수요 예측을 위하여 대표적 시계열 모형을 소개하고, 예측의 성능 비교를 위하여 RMSE(Root mean squared error)와 MAPE(Mean absolute percentage error)를 사용한다. 연구결과로 보완된 Holt-Winters 모형과 Reg-ARIMA 모형이 다른 모형에 비하여 우수한 예측 성능을 보였다.
Communications for Statistical Applications and Methods
/
제31권1호
/
pp.143-154
/
2024
This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models that are commonly used to forecast time series data. The combined model is constructed through an innovational state space model based on the level variable instead of the differenced variable, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined model outperforms the competing models.
최근 온실가스의 증가로 인한 기후변화 대응의 필요성과 전력수요의 증가로 인해 태양광발전량(PV) 예측의 중요성은 급격히 증가하고 있다. 특히, 태양광 발전량을 예측하는 것은 합리적인 전력 가격결정과 시스템 안정성 및 전력 생산 균형과 같은 문제를 효과적으로 해결하기 위해 전력생산 계획을 합리적으로 계획하는데 도움이 될 수 있다. 그러나 일사량, 운량, 온도 등과 같은 기후정보 및 계절 변화로 인한 태양광 발전량이 무작위적으로 변화하기 때문에 정확한 태양광 발전량을 예측하는 것은 도전적인 일이다. 따라서 본 논문에서는 딥러닝 모델을 통해 기후 및 계절정보를 이용하여 학습함으로써 장기간 태양광 발전량 예측 성능을 향상시킬 수 있는 기법을 제안한다. 본 연구에서는 대표적인 시계열 방법 중 하나인 계절형 ARIMA 모델과 하나의 은닉층으로 구성되어 있는 ANN 기반의 모델, 하나 이상의 은닉층으로 구성되어 있는 DNN 기반의 모델과의 비교를 통해 본 연구에서 제시한 모델의 성능을 평가한다. 실데이터를 통한 실험 결과, 딥러닝 기반의 태양광 발전량 예측 기법이 가장 우수한 성능을 보였으며, 이는 본 연구에서 목표로 한 태양광 발전량 예측 성능 향상에 긍정적인 영향을 나타내었음을 보여준다.
We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI). We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period) may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.
Evapotranspiration and rainfall-runoff are the major components of hydrological cycle and thereby the changes of them can directly affect the wetness/dryness or runoff characteristics of basins. In this study the wetness/dryness in Geum river basin are classified by dint of cumulative probability density function of monthly moisture index and the long term changes of them are analyzed based on climatic water balance concept. The drought events in Geum river basin are selected through evaluation of monthly moisture index and the various hydrological properties of them are investigated in detail. Also the trends of time-series of climatic water balance components are examined by Seasonal Kendall test and the variability of hydrological cycle in Geum river basin during the recent decade is inquired. It is judged that the results of this study can be contributed to establishment of the counter plan against the future drought events as the fundamental information.
In this study the wetness/dryness in Geum river basin are classified by dint of cumulative probability density function of monthly moisture index and the long term changes of them are analyzed based on climatic water balance concept. The drought events in Geum river basin are selected through evaluation of monthly moisture index and the various hydrological properties of them are investigated in detail. Also the trends of time-series of climatic water balance components are examined by Seasonal Kendall test and the variability of hydrological cycle in Geum river basin during the recent decade is inquired. It is judged that the results of this study can be contributed to establishment of the counter plan against the future drought events as the fundamental information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.