• 제목/요약/키워드: Seasonal Time Series

검색결과 321건 처리시간 0.031초

A Machine Learning Univariate Time series Model for Forecasting COVID-19 Confirmed Cases: A Pilot Study in Botswana

  • Mphale, Ofaletse;Okike, Ezekiel U;Rafifing, Neo
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.225-233
    • /
    • 2022
  • The recent outbreak of corona virus (COVID-19) infectious disease had made its forecasting critical cornerstones in most scientific studies. This study adopts a machine learning based time series model - Auto Regressive Integrated Moving Average (ARIMA) model to forecast COVID-19 confirmed cases in Botswana over 60 days period. Findings of the study show that COVID-19 confirmed cases in Botswana are steadily rising in a steep upward trend with random fluctuations. This trend can also be described effectively using an additive model when scrutinized in Seasonal Trend Decomposition method by Loess. In selecting the best fit ARIMA model, a Grid Search Algorithm was developed with python language and was used to optimize an Akaike Information Criterion (AIC) metric. The best fit ARIMA model was determined at ARIMA (5, 1, 1), which depicted the least AIC score of 3885.091. Results of the study proved that ARIMA model can be useful in generating reliable and volatile forecasts that can used to guide on understanding of the future spread of infectious diseases or pandemics. Most significantly, findings of the study are expected to raise social awareness to disease monitoring institutions and government regulatory bodies where it can be used to support strategic health decisions and initiate policy improvement for better management of the COVID-19 pandemic.

Methodology for Regional Forest Biomass Estimation Using MODIS Data

  • Yu, Xinfang;Zhuang, Dafang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.325-327
    • /
    • 2003
  • Forest biomass is the basis of forest ecosystem. With the rapid development of remote sensing and computer technology, forest biomass estimation using remote sensing data is paid great attention and has acquired great achievements. This article focuses on discussion of methods of forest biomass estimation methods using Terra/MODIS data in Northeast China. The research include: combining the MODIS time series parameters with seasonal characteristics of forest species to identify major forest species; establishing a model to estimate forest biomass based on forest species; analyzing the effects of the existent forest biomass and increasing biomass on terrestrial carbon cycle. This research can help to make clear the mechanism of carbon cycle.

  • PDF

한국 일강우의 추계학적 구조 (Stochastic Structure of Daily Rainfall in Korea)

  • 이근후
    • 한국농공학회지
    • /
    • 제31권4호
    • /
    • pp.72-80
    • /
    • 1989
  • Various analyses were made to investigate the stochastic structure of the daily rainfall in Korea. Records of daily rainfall amounts from 1951 to 1984 at Chinju Metesrological Station were used for this study. Obtained results are as follows : 1. Time series of the daily rainfall at Chinju were positively, serially correlated for the lag as large as one day. 2. Rainfall events, defined as a sequence of consecutive wet days separated by one or more dry days, showed a seasonal variation in the occurrence frequency. 3. The marginal distribution of event characteristics of each month showed significant dif- ferences each other. Events occurred in summer had longer duration and higher magnitude with higher intensity than those of events occurred in winter. 4. There were significant positive correlations among four event characteristics ; dura- tion, magnitude, average intensity, and maximum intensity. 5. Correlations among the daily rainfall amounts within an event were not significant in general. 6. There were no consistant significancy in identity or difference between the distribu- tions of daily rainfall amounts for different days within events. 7. Above mentioned characteristics of daily rainfall time series must be considered in building a stochastic model of daily rainfall.

  • PDF

기온예상치를 고려한 모델에 의한 주간최대전력수요예측 (Weekly maximum power demand forecasting using model in consideration of temperature estimation)

  • 고희석;이충식;김종달;최종규
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.511-516
    • /
    • 1996
  • In this paper, weekly maximum power demand forecasting method in consideration of temperature estimation using a time series model was presented. The method removing weekly, seasonal variations on the load and irregularities variation due to unknown factor was presented. The forecasting model that represent the relations between load and temperature which get a numeral expected temperature based on the past 30 years(1961~1990) temperature was constructed. Effect of holiday was removed by using a weekday change ratio, and irregularities variation was removed by using an autoregressive model. The results of load forecasting show the ability of the method in forecasting with good accuracy without suffering from the effect of seasons and holidays. Percentage error load forecasting of all seasons except summer was obtained below 2 percentage. (author). refs., figs., tabs.

  • PDF

시계열 모형을 이용한 일별 최대 전력 수요 예측 연구 (Daily Peak Load Forecasting for Electricity Demand by Time series Models)

  • 이정순;손흥구;김삼용
    • 응용통계연구
    • /
    • 제26권2호
    • /
    • pp.349-360
    • /
    • 2013
  • 최근 일별 최대 전력수요 예측은 전력설비 계획 및 운용에 매우 중요한 사안으로 주목받고 있다. 본 연구는 일별 최대 전력수요 예측을 위하여 대표적 시계열 모형을 소개하고, 예측의 성능 비교를 위하여 RMSE(Root mean squared error)와 MAPE(Mean absolute percentage error)를 사용한다. 연구결과로 보완된 Holt-Winters 모형과 Reg-ARIMA 모형이 다른 모형에 비하여 우수한 예측 성능을 보였다.

Forecasting with a combined model of ETS and ARIMA

  • Jiu Oh;Byeongchan Seong
    • Communications for Statistical Applications and Methods
    • /
    • 제31권1호
    • /
    • pp.143-154
    • /
    • 2024
  • This paper considers a combined model of exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models that are commonly used to forecast time series data. The combined model is constructed through an innovational state space model based on the level variable instead of the differenced variable, and the identifiability of the model is investigated. We consider the maximum likelihood estimation for the model parameters and suggest the model selection steps. The forecasting performance of the model is evaluated by two real time series data. We consider the three competing models; ETS, ARIMA and the trigonometric Box-Cox autoregressive and moving average trend seasonal (TBATS) models, and compare and evaluate their root mean squared errors and mean absolute percentage errors for accuracy. The results show that the combined model outperforms the competing models.

기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법 (Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information)

  • 이동훈;김관호
    • 한국전자거래학회지
    • /
    • 제24권1호
    • /
    • pp.1-16
    • /
    • 2019
  • 최근 온실가스의 증가로 인한 기후변화 대응의 필요성과 전력수요의 증가로 인해 태양광발전량(PV) 예측의 중요성은 급격히 증가하고 있다. 특히, 태양광 발전량을 예측하는 것은 합리적인 전력 가격결정과 시스템 안정성 및 전력 생산 균형과 같은 문제를 효과적으로 해결하기 위해 전력생산 계획을 합리적으로 계획하는데 도움이 될 수 있다. 그러나 일사량, 운량, 온도 등과 같은 기후정보 및 계절 변화로 인한 태양광 발전량이 무작위적으로 변화하기 때문에 정확한 태양광 발전량을 예측하는 것은 도전적인 일이다. 따라서 본 논문에서는 딥러닝 모델을 통해 기후 및 계절정보를 이용하여 학습함으로써 장기간 태양광 발전량 예측 성능을 향상시킬 수 있는 기법을 제안한다. 본 연구에서는 대표적인 시계열 방법 중 하나인 계절형 ARIMA 모델과 하나의 은닉층으로 구성되어 있는 ANN 기반의 모델, 하나 이상의 은닉층으로 구성되어 있는 DNN 기반의 모델과의 비교를 통해 본 연구에서 제시한 모델의 성능을 평가한다. 실데이터를 통한 실험 결과, 딥러닝 기반의 태양광 발전량 예측 기법이 가장 우수한 성능을 보였으며, 이는 본 연구에서 목표로 한 태양광 발전량 예측 성능 향상에 긍정적인 영향을 나타내었음을 보여준다.

Drought over Seoul and Its Association with Solar Cycles

  • Park, Jong-Hyeok;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.241-246
    • /
    • 2013
  • We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI). We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period) may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.

기후학적 물수지에 의한 금강유역의 습윤/건조 상태 분석 (Analysis of Wetness/Dryness in Geum River Basin based on Climatic Water Balance)

  • 김주철;이상진
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.243-251
    • /
    • 2010
  • Evapotranspiration and rainfall-runoff are the major components of hydrological cycle and thereby the changes of them can directly affect the wetness/dryness or runoff characteristics of basins. In this study the wetness/dryness in Geum river basin are classified by dint of cumulative probability density function of monthly moisture index and the long term changes of them are analyzed based on climatic water balance concept. The drought events in Geum river basin are selected through evaluation of monthly moisture index and the various hydrological properties of them are investigated in detail. Also the trends of time-series of climatic water balance components are examined by Seasonal Kendall test and the variability of hydrological cycle in Geum river basin during the recent decade is inquired. It is judged that the results of this study can be contributed to establishment of the counter plan against the future drought events as the fundamental information.

금강유역의 습윤/건조 상태에 대한 경향성 분석 (Trend Analysis of Wetness/Dryness in Geum River Basin)

  • 김주철;이상진;황만하;안정민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1640-1644
    • /
    • 2010
  • In this study the wetness/dryness in Geum river basin are classified by dint of cumulative probability density function of monthly moisture index and the long term changes of them are analyzed based on climatic water balance concept. The drought events in Geum river basin are selected through evaluation of monthly moisture index and the various hydrological properties of them are investigated in detail. Also the trends of time-series of climatic water balance components are examined by Seasonal Kendall test and the variability of hydrological cycle in Geum river basin during the recent decade is inquired. It is judged that the results of this study can be contributed to establishment of the counter plan against the future drought events as the fundamental information.

  • PDF