• 제목/요약/키워드: Search algorithms

검색결과 1,328건 처리시간 0.026초

Enhancement OLSR Routing Protocol using Particle Swarm Optimization (PSO) and Genrtic Algorithm (GA) in MANETS

  • Addanki, Udaya Kumar;Kumar, B. Hemantha
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.131-138
    • /
    • 2022
  • A Mobile Ad-hoc Network (MANET) is a collection of moving nodes that communicate and collaborate without relying on a pre-existing infrastructure. In this type of network, nodes can freely move in any direction. Routing in this sort of network has always been problematic because of the mobility of nodes. Most existing protocols use simple routing algorithms and criteria, while another important criterion is path selection. The existing protocols should be optimized to resolve these deficiencies. 'Particle Swarm Optimization (PSO)' is an influenced method as it resembles the social behavior of a flock of birds. Genetic algorithms (GA) are search algorithms that use natural selection and genetic principles. This paper applies these optimization models to the OLSR routing protocol and compares their performances across different metrics and varying node sizes. The experimental analysis shows that the Genetic Algorithm is better compared to PSO. The comparison was carried out with the help of the simulation tool NS2, NAM (Network Animator), and xgraph, which was used to create the graphs from the trace files.

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • 제8권1호
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.

유전알리고즘을 이용한 유압모터의 속도제어파라메터 최적화 (Optimization of control parameters for speed control of a hydraulic motor using genetic algorithms)

  • 현장환;안철현;이정오
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.139-145
    • /
    • 1997
  • This study is concerned with the optimizing method of control parameters for a hydraulic speed control system by using genetic algorithms which are general purpose search algorithms based on natural evolution and genetics. It is shown that the genetic altorithms satisfactorily oiptimized control gains of the PI speed control system of an electrohydraulic servomotor and that optimization of control para- meters can be achived without much experience and knowledge for tuning. It is also shown that optimal gains may be determined from fitness distribution curves plotted in given gain spaces.

  • PDF

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘 (An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm)

  • 장지연;이용희;주상원
    • 한국지능시스템학회논문지
    • /
    • 제27권1호
    • /
    • pp.79-87
    • /
    • 2017
  • 기상수치예보모델의 강수물리과정은 강수 발생과 연관된 입자의 낙하속도, 부착 및 자동전환, 입자크기분포 등의 과정을 다룬다. 하지만 수치예보모델의 미세물리과정과 모수에는 상당한 불확실성이 내포되어 있다. 수치예보모델의 불확실성을 줄이기 위하여 일반적으로 모수 추정을 사용한다. 이 연구에서는 모수 추정을 위한 최적화 알고리즘으로 마이크로 유전알고리즘과 하모니탐색 알고리즘을 사용하고 우리나라에서 발생한 강수사례에 대해 통합모델의 강수물리과정에서 사용하는 모수를 최적화하였다. 두 알고리즘의 서로 다른 특성으로 인해 최적화 과정 중의 차이가 보였다. 마이크로 유전알고리즘은 440회 수행 후 약 1.033의 적합도로 수렴하였고 하모니탐색 알고리즘은 60번 수행 후 약 1.031의 적합도로 수렴하였다. 이를 통해 하모니탐색 알고리즘이 마이크로 유전알고리즘보다 더 빨리 최적의 모수를 탐색하는 것을 알 수 있었다. 따라서 계산비용이 방대한 기상수치예보모델의 최적화 문제에서 빠른 시간 내에 최적의 모수를 탐색해야 한다면 하모니 탐색 알고리즘이 더 적합하다는 것을 확인하였다.

Sizing, geometry and topology optimization of trusses using force method and supervised charged system search

  • Kaveh, A.;Ahmadi, B.
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.365-382
    • /
    • 2014
  • In this article, the force method and Charged System Search (CSS) algorithm are used for the analysis and optimal design of truss structures. The CSS algorithm is employed as the optimization tool and the force method is utilized for analysis. In this paper in addition to member's cross sections, redundant forces, geometry and topology variables are considered as the optimization variables. Minimum complementary energy principle is used directly to analyze the structure. In the presented method, redundant forces are calculated by the CSS in order to minimize the energy function. Combination of the CSS and force method leads to an efficient algorithm in comparison to some of the optimization algorithms.

저전력 에너지 관리 알고리즘 적용을 위한 하드웨어 움직임 추정기 구조 설계 및 특성 분석 (Design and Analysis of Motion Estimation Architecture Applicable to Low-power Energy Management Algorithm)

  • 김응섭;이찬호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.561-564
    • /
    • 2004
  • The motion estimation which requires huge computation consumes large power in a video encoder. Although a number of fast-search algorithms are proposed to reduce the power consumption, the smaller the computation, the worse the performance they have. In this paper, we propose an architecture that a low energy management scheme can be applied with several fast-search algorithm. In addition. we show that ECVH, a software scheduling scheme which dynamically changes the search algorithm, the operating frequency, and the supply voltage using the remaining slack time within given power-budget, can be applied to the architecture, and show that the power consumption can be reduced.

  • PDF

Efficient Multi-way Tree Search Algorithm for Huffman Decoder

  • Cha, Hyungtai;Woo, Kwanghee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.34-39
    • /
    • 2004
  • Huffman coding which has been used in many data compression algorithms is a popular data compression technique used to reduce statistical redundancy of a signal. It has been proposed that the Huffman algorithm can decode efficiently using characteristics of the Huffman tables and patterns of the Huffman codeword. We propose a new Huffman decoding algorithm which used a multi way tree search and present an efficient hardware implementation method. This algorithm has a small logic area and memory space and is optimized for high speed decoding. The proposed Huffman decoding algorithm can be applied for many multimedia systems such as MPEG audio decoder.

CELP 보코더에서 델타 피치 검색 방법 개선에 대한 연구 (An Algorithm to Reduce the Pitch Computational Complexity Using Modified Delta Searching in G.723.1 Vocoder)

  • 민소연;배명진
    • 음성과학
    • /
    • 제11권3호
    • /
    • pp.165-172
    • /
    • 2004
  • In this paper, we propose the computational complexity reduction methods of delta pitch search that is used in G.723.1 vocoder. In order to decrease the computational complexity in delta pitch search the characteristic of proposed algorithms is as the following. First, scheme to reduce the computational complexity in delta pitch search uses NAMDF. Developed the second scheme is the skipping technique of lags in pitch searching by using the threshold value. By doing so, we can reduce the computational amount of pitch searching more than 64% with negligible quality degradation.

  • PDF

퍼지로직제어에 의해 강화된 혼합유전 알고리듬 (Hybrid Genetic Algorithm Reinforced by Fuzzy Logic Controller)

  • 윤영수
    • 대한산업공학회지
    • /
    • 제28권1호
    • /
    • pp.76-86
    • /
    • 2002
  • In this paper, we suggest a hybrid genetic algorithm reinforced by a fuzzy logic controller (flc-HGA) to overcome weaknesses of conventional genetic algorithms: the problem of parameter fine-tuning, the lack of local search ability, and the convergence speed in searching process. In the proposed flc-HGA, a fuzzy logic controller is used to adaptively regulate the fine-tuning structure of genetic algorithm (GA) parameters and a local search technique is applied to find a better solution in GA loop. In numerical examples, we apply the proposed algorithm to a simple test problem and two complex combinatorial optimization problems. Experiment results show that the proposed algorithm outperforms conventional GAs and heuristics.