• Title/Summary/Keyword: Sealing Performance

Search Result 269, Processing Time 0.029 seconds

Investigating the Tensile-Shear of Dissimilar Materials Joined Using the Hybrid SPR Technique (Hybrid SPR 접합을 적용한 이종소재 인장전단에 관한 연구)

  • Yu, Kwan-jong;Choi, Du-bok;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.33-39
    • /
    • 2020
  • Self-piercing rivets are often used in the automotive industry, among other industries, as mechanical components to join multiple materials such as aluminum alloys. Self-piercing rivets have a strong sealing property, although there is considerable scope for their performance improvement. In this study, to enhance the performance of self-piercing rivets, the hybrid self-piercing riveting (SPR) technique, using the existing SPR and structural adhesive, was proposed. Moreover, heterogeneous material specimens subjected to the hybrid SPR technique were manufactured and tested. The joint strength of the test pieces of different materials was evaluated through finite element analyses.

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

The Development and Performance Evaluation of the Air-preheating Heat Exchanger for Ultra-high Temperature Applications (초고온융 공기예열식 열교환기의 개발 및 성능 평가)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.78-84
    • /
    • 1999
  • A compact air-preheating type heat exchanger was developed and tested for the ultra-high temperature heat recovery applications. For the direct use of exhaust gases up to $1200^{\circ}C$, the heat exchanger adopted a ceramic core with high strength and low thermal expansion coefficient less than $1{\times}10^{-6}^{\circ}C^{-1}$. The ceramic core was fabricated by special extrusion and bonding techniques. To minimize thermal stresses in the core, spring-loaded sealing mechanism was designed and successfully installed. 1-pass air flow scheme was adopted for the compactness and cost-savings. The pressure test for the ceramic core showed no failure under 35 kPa and less than 3% leak under 7 kPa. Flue gas simulation system was developed to investigate the performance of the heat exchanger. The test results showed normal operations of the heat exchanger up to $1200^{\circ}C$ of exhaust gases and relatively high heat recovery efficiencies of 31~39% depending upon exhaust gas temperatures..

  • PDF

Study on the performance of elastomeric O-ring subjected to foreign objects using finite-element analysis (유한요소해석을 이용한 이물질이 고무 오링에 미치는 영향과 성능 평가)

  • Pack, Inseok;Rhee, Heejang;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.52-58
    • /
    • 2016
  • The elastomeric O-ring is the most-commonly-used seal due to its excellent sealing capacity, and its availability in various costs and sizes; furthermore, its importance has lasted over a long duration. However, a dearth of research exists in Korea regarding the elastomeric O-ring and the corresponding techniques. The constituent parts of elastomeric rubber are important; to determine their properties, the uni-axial tension and equi-biaxial tension need to be tested. Also, the non-linear analysis method reduces the design cost. An O-ring failure causes leaks and vibration. In this paper, foreign objects are used to affect an O-ring and its performance so that all angles of the O-ring design can be considered. This paper presents a solution for the O-ring-failure problem using a finite-element analysis.

A Numerical Study on Flow Characteristics of a Honeycomb seal (Honeycomb Seal의 유동 특성 해석)

  • Hong, E.;Hur, N.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.153-157
    • /
    • 2000
  • Honeycomb seals are used widely in gas turbines due to their good sealing performance and rotor-dynamic stability. Three-Dimensional complex flows in a honeycomb seal were analyzed in the present study. Friction factors were computed to predict the performance of a honeycomb seal based on pressure drop results for various honeycomb cell geometry and Reynolds numbers. Computed results for friction factor are compared to the available experimental data. Unlike in the experiment, where 'Friction-Factor Jump' phenomena are reported for some cases, computed results show no jump phenomena. The friction factors, however, are in good agreement with the experiment in no-jump cases.

  • PDF

A Study on the Relationship between Stress Relaxation and Performance of a Lip Seal (응력완화와 립 시일의 성능의 관계에 대한 연구)

  • Yoo, Myung-Ho;Lee, Taek-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.85-91
    • /
    • 2009
  • A lip seal is widely used not only to prevent leakage of fluids from an actuator or a rotating shaft but also to exclude outside substances. Recently, TPU(Thermoplastic Polyurethane), which is one of the sealing materials, has been frequently used due to its excellent mechanical properties and wear resistance. The material constants for finite element analysis through the experiment on stress relaxation are presented. The reaction forces of a shaft as well as the contact pressures of a lip seal under condition before and after stress relaxation using finite element analysis were obtained, The results show that stress relaxation has not a little effect on the performance of a lip seal.

A Numerical Study on the Contact Behavior Analysis with Thermal and New Design of Bonded Door Seal (접합식 도어시일의 온도를 고려한 접촉거동에 관한 수치적 연구)

  • Kim Chung Kyun;Kim Han Goo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.335-340
    • /
    • 2003
  • This paper presents contact behavior of a perfluoroelastomer bonded door seal by a non-linear finite element method using the mechanical and thermal analysis. The shape effects are investigated for sealing performance of bonded door seal. Also maximum stress, temperature distribution and contact force are investigated. A bonded door seal was modeled three shape. The highest contact force occurs at model III(sunflower shape). The maximum stress of model III is lower than that of the others. The calculated FEM results show that the model III has excellent performance compared with other seal models.

  • PDF

Simulation on Drop and Penetration Tests of a Fuel Tank (연료탱크의 낙하 및 관통 시험 시뮬레이션)

  • Park, Sun-Young;Bae, Jaesung;Hwang, Jai-Hyuk;Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.8-13
    • /
    • 2008
  • The fuel tank systems of fixed wing and rotary wing aircrafts require the self-sealing and crash-worthiness for their survivability. For these requirements, the flexible composite fuel tank is generally used. In this study, the drop and penetration performance of a fuel tank is investigated. The FE simulation includes the drop and penetration test of a fuel tank using MSC.DYTRAN. MSC.DYTRAN can provide the fluid-structure modeling of these test from Euler and Lagrange grids. Using MSC.DYTRAN, the finite modeling of the test cube of the flexible fuel tank and its FE simulation are performed for various environments. The simulation results can show if the test cube satisfies the performance requirements of the fuel tank.

  • PDF

Effects of dye-guidance brushing etching technique on the performance of pits and fissures sealant (Dye-guidance와 brushing을 통한 산부식 방법이 치면열구전색술의 수복의 질에 미치는 영향)

  • Hung, Phan Ai;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.106-121
    • /
    • 2007
  • The purpose of this study was to examine the effects of suggested etching method on the performance of pits and fissures sealant. In the first part, seventy extracted sound human permanent third molars and premolars were used. The teeth were randomly divided and performed in three different groups as follows : conventional etching, enameloplasty, and testing group. Non-pumicing, dye-guidance vigorous brushing-start etching technique was applied on the occlusal of testing group. Then the pit and fissure sealant was applied on all of the specimens. After the thermocycling and immersing in 1% methylene blue, the resin embedded sections were made. The microleakage data on the section were then recorded under the stereoscope and statistic analysis was done. Additional experiments were also performed : direct fissure surface etched pattern experiment, replica study, and micro-shear bond strength testing observation. The second part included two groups. A paired study was designed to evaluate the influence the environment has on the performance of the sealant. After etching, half of each occlusal surface received one of the two following treatments in succession: sealing in laboratory and intraoral condition (group 1), sealing in intraoral condition with and without a single-bonding agent (group 2). The results of present study can be summarized as follows: - The microleakage of testing group was significant different with conventional method (P<.05) and was not different with the enameloplasty group (P>.05). - The quality and quantity of etched enamel were improved. - Microshear bond strength of testing group was higher than control group (p<.05). - The environmental condition was influenced on the performance of the sealant. The testing etching method modified the capacity of the etching agent to penetrate into the pits and fissures, and simultaneous enhance their efficiency in vitro condition.

  • PDF

Performance Analysis of Mechanical Face Seal Used for Primary Heat Transport Pump in Heavy Water Reactor (중수로 냉각재 펌프용 미케니컬 페이스 실의 성능 해석)

  • Kim, Jeong-Hun;Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.240-248
    • /
    • 2011
  • Mechanical face seal installed in primary heat transport pump used for heavy water reactor prevents leakage of working fluid using thin working fluid film between primary seal ring and mating ring. If the leakage of working fluid exceeds the allowable volume, serious accident can be happened by the trouble of primary heat transport pump. The thinner fluid film exists between primary seal ring and mating ring, the less working fluid leaks out. On the other hand, if the thickness of fluid film is not enough, the life of mechanical face seal will be reduced by friction and wear. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the performance of mechanical face seals which have same deep straight groove and 11 different net coning values. As results, equilibrium clearance between primary seal ring and mating ring, leakage volume of working fluid, friction torque on sealing surface and stiffness of working fluid film were obtained. With increasing net coning value, equilibrium clearance and leakage volume increase, and friction torque and stiffness of fluid film decrease.