• 제목/요약/키워드: Sealing Cap

검색결과 23건 처리시간 0.035초

비선형 접촉문제 해석을 통한 얼음 디스펜서 덕트 캡 조립체의 밀봉성능 평가 및 개선방안 연구 (A Study on Evaluation and Improvement of Sealing Performance of Duct Cap Assembly for Ice Dispenser By Nonlinear Contact Problem Analysis)

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.37-46
    • /
    • 2018
  • Present research is to evaluate and improve the sealing performance of the duct cap assembly for the ice dispensers through structural analysis. The nonlinear contact problems to check the sealing performance were analyzed using ANSYS software. The results of the analyses related to the sealing performance: the displacement distribution, the contact condition between the cap-silicon and the case, and the pressure distribution on the contact surface, were examined and discussed. Based on the results of the existing design of the duct cap assembly, two cases of the design modifications to improve the sealing performance were introduced. By examining the results of the two cases, a final design improvement plan was proposed and analyzed. It is shown that the sealing performance of the proposed final design is much more favorable than the existing design. The method of structural analysis and design improvement of the duct cap assembly presented in this paper will help improve the sealing performance of the ice dispenser duct caps.

On the Contact Behavior Analysis and New Design of High Pressure Piston Seals

  • Kim, Chung-Kyun;Cho, Seung-Hyun;Kim, Sung-Won;Ko, Young-Jin;Kim, Jong-Soo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.117-119
    • /
    • 2002
  • In this paper, the geometry effectiveness and contact modes as functions of real contact length on a cap ring have been analyzed for high pressure sealing mechanism in reciprocating actuator. The reaction force and elastic strain energy density are very important parameters for analyzing the sealing performance of an ACGT ring seal. For the high pressure of 800bar and the maximum speed of 3m/s, the main piston is reciprocating along the linear line against the cylinder wall. The computed results indicate that the length ratio of a cap ring is more influential design parameter compared to that of the tribological contact mode. Thus, this paper recommends the discrete contact area rather than a conventional flat contact model. Especially, the sealing capacity is more improved when the length ratio of a cap ring is below 0.625.

  • PDF

지속성 제제의 개발에 관한 연구 (I) 아스코르빈산 나트륨의 CAP 마이크로캅셀의 제조 및 평가 (Studies on the Development of Sustained Release Preparation (I) Preparation and Evaluation of CAP Microcapsules of Sodium Ascorbate)

  • 신상철;고익배
    • Journal of Pharmaceutical Investigation
    • /
    • 제21권4호
    • /
    • pp.253-262
    • /
    • 1991
  • Microencapsulation of sodium ascorbate with cellulose acetate phthalate(CAP) by coacervation/ phase separation method were carried out. Various factors affecting microencapsulation, i.e., surfactant concentration. CAP concentration, stirring speed and treatment of spermaceti as a sealing agent were studied. Dissolution rate. particle size distribution, surface feature and stability test were investigated. CAP microcapsules prepared using 0.5% span 80 as a surfactant showed smooth and round surfaces. The release of sodium ascorbate was retarded by microencapsulation with CAP and by sealant treatment with spermaceti. When triturated with sodium bicarbonate, CAP microcapsules were more stable than unencapsulated sodium ascorbate under various RH conditions at $37^{\circ}C$.

  • PDF

자동차 주유구 커버에 대한 사출성형과 2색 코팅 동시 구현에 관한 연구 (A study on simultaneous injection molding and two-color coating for car gas cap cover)

  • 배형섭;박동현;김부곤;서창호;허원근;이호상
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.32-40
    • /
    • 2021
  • Mold design for in-mold coating was carried out to achieve simultaneous injection molding and two-color coating for car gas cap cover. The developed mold includes one core and three cavities which are composed of a substrate cavity and two coating cavities. To provide a sealing edge for complete seal during the second coating, the first coated material was used at the boundary between the first coating and the second one, and injection molded substrate was used at the parting line. The materials used were PC/ABS for substrate and 2-component Polyurea for coating. Through experiments, it was found that the suggested sealing edges were effective for complete seal during the second coating. In cavity pressure traces, there were three peaks caused by mold closing, coating-material injection and cleaning-piston advancement inside the mixing head. The cavity pressure increased with decreasing coating thickness.

비선형 대변형 유한요소법을 이용한 열가소성 고무부품의 밀봉성능 예측 (Sealing Performance Prediction of Thermoplastic Rubber Component using Non-linear Large Deformation F.E.M.)

  • 박선;이신영;강은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.669-673
    • /
    • 2001
  • The objective of this paper is to predict and evaluate the sealing performance of the thermoplastic rubber component in the proto-design stage. The large strain and large deformation properties of rubber are modeled by strain energy function and the related material constants are calculated from the test data. The viscoelastic property of the rubber is also considered using the coefficients in a Prony series representation of a viscoelastic modulus ken the compression stress relaxation test. The results show that the current design of cap mount system has 2-different stiffness caused by the cap-mount contact and the viscoelastic property of rubber plays an important role in time dependent deformation.

  • PDF

3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징 (Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique)

  • 양충모;김희연;박종철;나예은;김태현;노길선;심갑섭;김기훈
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

비전도성 에폭시를 사용한 RF-MEMS 소자의 웨이퍼 레벨 밀봉 실장 특성

  • 박윤권;이덕중;박흥우;송인상;박정호;김철주;주병권
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.129-133
    • /
    • 2001
  • In this paper, hermetic sealing was studied fur wafer level packaging of the MEMS devices. With the flip-chip bonding method, this B-stage epoxy sealing will be profit to MEMS device sealing and further more RF-MEMS device sealing. B-stage epoxy can be cured 2-step and hermetic sealing can be obtained. After defining $500{\mu}{\textrm}{m}$-width seal-lines on the glass cap substrate by screen printing, it was pre-baked at $90^{\circ}C$ for about 30 minutes. It was then aligned and bonded with device substrate followed by post-baked at $175^{\circ}C$ for about 30 minutes. By using this 2-step baking characteristic, the width and the height of the seal-line were maintained during the sealing process. The height of the seal-line was controlled within $\pm0.6${\mu}{\textrm}{m}$ and the strength was measured to about 20MPa by pull test. The leak rate of the epoxy was about $10^7$ cc/sec from the leak test.

  • PDF

NaS 배터리 셀 패키지의 알루미나 컴포넌트 접합용 Sealing Glass의 기공율 제어 (Porosity Control of the Sealing Glass for Joining Alumina Components in a NaS Battery Cell Packaging)

  • 김치헌;허유진;김효태
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.57-61
    • /
    • 2016
  • 대용량 전력저장용 황화나트륨 기반의 전지를 개발함에 있어서 베타 알루미나 고체 전해질 튜브와 알파 알루미나 셀 캡 간의 물리적 접합을 위해서는 세라믹-세라믹 접합용 씰링 글라스 후막 페이스트가 필요하다. 본고에서는 글라스 프릿 분말의 입도, 열처리 조건이 씰링 글라스의 열처리 후 미세구조 특히 기공율과 그 분포에 미치는 영향을 연구하였다. 씰링 글라스 분말의 입자가 클수록 열처리 후의 글라스의 미세 조직상에서의 기공율 및 기공의 수가 감소하였으며, 열처리 온도가 증가 할수록 기공의 수가 감소하는 반면 기공의 크기는 증가함을 확인하였다. 이로써 글라스 씰란트의 제조에 있어서, 글라스 페이스트용 글라스 프릿 분말의 입자 크기와 씰링 열처리 온도의 적절한 선정에 의해 글라스 씰링부의 미세구조에서 기공율과 기공의 분포 및 기공의 수를 제어할 수 있음을 보여주었다.