• Title/Summary/Keyword: Sealed curing

Search Result 20, Processing Time 0.031 seconds

Suggestion of the Prediction Model for Material Properties and Creep of 60~80MPa Grade High Strength Concrete (설계기준강도 60~80MPa급 고강도콘크리트의 재료 특성 및 크리프 예측모델식 제안)

  • Moon, Hyung-Jae;Koo, Kyung-Mo;Kim, Hong-Seop;Seok, Won-Kyun;Lee, Byeong-Goo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2018
  • The construction of super tall building which structure is RC and must be certainly considered on column shortening estimation and construction reflected concrete creep has been increased. Regarding the Fck 60~80MPa grade high strength concrete applied in the domestic super tall building project, the mechanical properties and creep deflection according to curing conditions(Drying creep/Basic creep) were reviewed in this research. Results of compressive strength and elastic modulus under sealed curing condition were 5% higher than unsealed condition and difference of results according to the curing condition was increased over time. Autogenous and drying shrinkage tendency showed adversely in the case of high strength concrete. Additionally, creep modulus under unseal curing condition was evaluated 2~3 times higher than sealed condition. Modified model of ACI-209 based on test result was applied to estimate long period shortening of vertical members(such as Core Wall/Mega Column) exactly, it is designed to modify and suggest the optimal creep model based on various data accumulated during construction, in the future.

Evaluation of Fundamental Properties and Chloride Penetration Resistance of Concrete using Superabsorbent Polymers (고 흡수성 폴리머를 혼입한 콘크리트의 기초 물성 및 염화물 침투 저항성 평가)

  • Lee, Chan-Kyu;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.50-59
    • /
    • 2020
  • Superabsorbent Polymer (SAP) expands inside concrete by absorbing water and contracts as it discharges water. Through this process, concrete can achieve the internal curing effect, but the space occupied by the expanded SAP remains as a void. In this study, the effects of SAP internal curing and voids were evaluated by evaluating the fundamental properties and chloride penetration resistance of SAP mixed concrete. Also, to evaluate the internal curing effect by SAP, the tests were carried out under water and sealed curing conditions, respectively. From the result, the compressive strength of water curing did not differ significantly according to the mixing ratio of SAP. In the case of sealed curing, however, the compressive strength tended to increase as the mixing ratio of SAP increased. The internal curing effect of sealed curing was considered to have influenced the increase in compressive strength. In the case of the chloride diffusion coefficient, the diffusion coefficient tended to decrease as the mixing ratio of SAP increased. In particular, as the sealed curing is applied, the chloride penetration resistance is further improved due to internal curing effect. If the curing conditions are different, it is considered inappropriate to estimate the chloride penetration resistance by the surface electrical resistivity.

Effect of Absorbent Materials and Initial Sealed Curing on Drying Shrinkage and Compressive Strength of Hwangtoh Mortar (흡수성 물질과 초기 밀봉양생이 황토 모르타르의 건조수축과 압축강도에 미치는 영향)

  • Kwon, Yang-Hee;Hong, Sung-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.20-29
    • /
    • 2016
  • This study investigates the effect of the absorbent materials on the material properties(compressive strength and drying shrinkage) of natural hwangtoh mortar which is one of the traditional building material in Korea. The absorbent materials used are seaweed paste and Super-Absorbent Polymer(SAP). In addition to the absorbent materials, the initial sealed curing recommended by the standard specification of properties for Korean traditional building materials is also a main interest of this study. Based on the test results of 28 days compressive strength and converged drying shrinkage, it is confirmed that the initial sealed curing for 7 days is effective to reduce the drying shrinkage and to enhance the compressive strength. Thus, it is verified that the recommendation is reasonable and has positive effects on the properties of the mortar. Next, the test results show that the addition of absorbent materials into the mortar is also effective to the two properties depending on their absorption capacity. Thus, it is more effective to use SAP than the seaweed paste because of higher absorption capacity. However, both the initial sealed curing and keeping total water contents of the mortar are required to show this effectiveness. Lastly, the compressive strength is inversely proportional to the drying shrinkage. By using this relation, the reason of the increase of compressive strength due to the initial sealed curing or the addition of absorbent materials is quantitatively explained.

Analysis of Strength Characteristic for Bottom Ash Mixtures as Mixing Ratio and Curing Methods (Bottom Ash와 혼합재료의 혼합비 및 양생방법에 따른 강도특성 분석)

  • Choi, Woo-Seok;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.129-140
    • /
    • 2013
  • Bottom Ash is industrial by-product from a thermoelectric power plant. An immense quantities of bottom ash have increased each year, but most of them is reclaimed in ash landfill. In this study, in order to raise recycling rate of Bottom Ash, it is suggested to cure Bottom Ash (BA) mixtures mixed with cement, lime, Fly Ash (FA), and oyster shell (OS). Mixtures of 5~20 % mixing ratio had been cured for 1, 3, 7, 14, and 28 days using sealed curing and air-dry curing method. Unconfined compressive strength test was conducted to determine strength and deformation modulus ($E_{50}$) change for mixtures as mixing ratio and curing day, water contents of mixtures were measured after test. As a result, strength and $E_{50}$ were increased as mixing ratio and curing days, but values and tendencies of them appeared in different as kind of mixture, mixing ratio, curing method, and curing days. The results showed the addition of cement, lime, Fly Ash, and oyster soil in Bottom Ash could improved strength and $E_{50}$ and enlarge its field of being used.

Strength Properties of Bisphenol A-Type Epoxy-Modified Mortars under Various Curing Conditions (각종 양생조건에 따른 비스페놀 A형 에폭시수지 혼입 모르타르의 강도성상)

  • Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.55-59
    • /
    • 2009
  • The epoxy resin without hardener can harden by a ring-opening reaction in the presence of the alkalies produced by the hydration of cement in epoxy-modified mortars and concretes. This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using bisphenol A-type epoxy resin without hardener. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to ideal, water, dry and heat cures. In the heat cure, the epoxy-modified mortars are sealed or unsealed with a PVDC (polyvinylidene chloride) film. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. The microstructures of the epoxy-modified mortars are also observed by scanning electron microscope. The effects of curing conditions on the strength development of the epoxy-modified mortars are examined. From the test results, the marked effectiveness of the heat cure under the PVDC film sealing against the development of the strength of the epoxy-modified mortar without the hardener is recognized. The flexural and compressive strengths of 7-day-90℃ heat-cured, PVDC film-sealed epoxy-modified mortars without hardener reach 7 to 17MPa and 24 to 44MPa respectively, and are two to three times of Unmodified mortar. Such high strength development of the epoxy-modified mortars may be achieved by the dense microstructure formation by cement hydrates and the hardening of the epoxy resin in the mortars.

  • PDF

Time-dependent Behaviors of Concrete Exposed in the 100% Relative Humidity (상대습도 100% 환경에 노출된 콘크리트의 시간 의존적 거동)

  • Min, Kyung-Hwan;Kim, Youl-Hee;Jung, Hyung-Chul;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.693-696
    • /
    • 2008
  • In order to assess time-dependent behaviors of the high-strength concrete that applied in actual FCM bridges with various curing environments, the shrinkages of air-dried, sealed, and moist 100${\times}$100${\times}$400 mm prism specimens were measured. And the compressive creep test of 3 and 28 days aged concrete in the tap water and 10% CaCl$_2$ solutions were carried out, then results were compared with traditional test results of air-dried and sealed specimens. Time-dependent behaviors of the concrete that according to curing circumstances between sealed and moist specimens show remarkable differences not only on the shrinkage but also on the creep. Hence there need some reconsiderations to the traditional creep test manners that predicting the creep and shrink age of actual concrete structures.

  • PDF

Evaluation of Compressive Strength and Freeze-thaw Resistance Properties of Concrete using Superabsorbent Polymer (고 흡수성 폴리머를 혼입한 콘크리트의 압축 강도 및 동결융해 저항성 평가)

  • Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.86-94
    • /
    • 2020
  • When the Superabsorbent Polymer (SAP) is added into concrete, the slump decreases rapidly, deteriorating the workability, the internal curing effect can be obtained through the water absorption and discharge process, and the internal voids of the concrete are increased. In this study, the effects of internal curing and voids were evaluated by evaluating the compressive strength, freeze-thaw resistance, and chloride penetration resistance of SAP-adding concrete that secured workability using a water reducing agent. Also, the internal curing effect of SAP was evaluated by dividing the curing conditions of concrete into water curing and sealed curing. From the result, as the SAP adding ratio increased, the amount of water reducing agent increased, and as for the compressive strength, the SAP adding ratio of 1.5% showed the greatest compressive strength. In particular, in the case of sealed curing showed higher compressive strength than the water curing. It is considered that the compressive strength increased due to the reduction of the effective water-cement ratio and the internal curing effect. Adding 1.0~1.5% of SAP improved the freeze-thaw resistance similar to the case of adding the AE agent, and the addition of more than 1.0% of SAP improved the chloride penetration resistance. The optimal adding ratio of SAP is 1.5%, and the adding ratio of 2.0% or more adversely affects the compressive strength and freeze-thaw resistance.

A Study on the Behavior of Chloride Ion in Hardened Cement Paste at Defferent Stages of Curing (재령에 따른 시멘트 경화체내 염화물 이온의 거동에 관한 연구)

  • 문소현;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.185-190
    • /
    • 1998
  • Corrosion of steel reinforcement is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits on the corrosion of steels in concrete. The main objective of this study is understanding behavior of chloride ion in hardened cement pastes at different stages of curing. Cement pastes with water-cement ratio of 0.5 are allowed to hydrate in sealed containers for 28, 70, 180 days. And than pore solution is expressed. It was found that the $Cl^-$ concentrations in pore solution is decreased with increasing curing time in all Nacl addition level, the $OH^-$ concentrations is increased to 70 days but decrease at 180 days in all Nacl addition level. The $Cl^-$/$OH^-$ in pore solution is increased with increasing curing time in all Nacl addition level, however $Cl^-$/$OH^-$ of maximum Nacl addition level(Nacl 0.54% by weight of cement) is under the onset of depassivation level 0.3.

  • PDF

Influence of Membrane Forming Compounds for Concrete on Water Retention Properties of Concrete Mortar (콘크리트용 피막 양생제가 시멘트 모르타르의 보습특성에 미치는 영향)

  • Lee, Gun-Cheol;Noh, Sang-Kyun;Cho, Byoung-Young;Kim, Young-Geun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.117-120
    • /
    • 2009
  • It has been gradually increased with the use of resin based membrane forming agent for curing method, which plays a role in protecting moisture evaporation by forming resin membrane at the surface of concrete. In this paper, tests were carried out to examine moisture retention capability of cement mortar applying membrane forming agent. Dosages and types of the membrane forming agent were varied. It is found that sheet curing sealed with the surface of concrete closely has favorable moisture retention capability. However, the application of membrane forming curing method had superiority in moisture retention capability at early stage but at later age, its capability is deteriorated. Hence, further study regarding altering application method was necessary to secure enhanced moisture retention capability.

  • PDF

Strength Improvement of Polymer-Modified Mortars Using Epoxy Resin (에폭시수지 혼입 폴리머 시멘트 모르타르의 강도증진방안)

  • Kim, Wan-Ki;Jo, Young-Kug
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.465-468
    • /
    • 2006
  • This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using epoxy resin with various curing methods. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to standard, hot water, heat cure and autoclave cures. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. From the test results, the flexural and compressive strengths of the epoxy-modified mortars are hardly improved by the autoclave and hot water cures compared to the ideal cure of $20^{\circ}C$. Among the four types of curing methods, the strengths of the heat cured epoxy-modified mortars is largely improved. Especially, it is obtained in the mortars sealed with PVDC film.

  • PDF