• Title/Summary/Keyword: Seal Well

Search Result 126, Processing Time 0.027 seconds

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

Fit comparison of Domestic N95 Medical Masks in a Fit test (Fit Test를 이용한 국내산 N95 마스크의 교육 후 밀착도 비교)

  • Seo, Hyekyung;Kwon, Young-il;Myong, Jun-Pyo;Kang, Byoung-kab
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.1
    • /
    • pp.94-104
    • /
    • 2021
  • Objectives: A number of medical institutions have been conducting fit tests to perform seal checks on masks. This study aimed to compare the differences fit factor before and after domestic N95 mask-wearing training through a fit-test. Methods: A survey of 59 healthcare workers was conducted regarding whether they had undergone a fit test or received training on mask-wearing. Further, the fit of two types of domestic N95 masks was measured before and after the training using a QNFT(Quantitative Fit test). The average fit factors before and after training were compared using a paired t-test. Additionally the differences in the fit test pass rate were analyzed using a McNemar test. Results: A statistically significant difference was seen between the fit factors in the fit tests conducted before and after the training (p=0.0015), as well as in the fit of the two types of masks tested (p<0.01). Thus, an improvement in mask fitting was seen after the training, even with differently fitted masks. Conclusions: Upon using a QNFT, a significant increase in the fit factors for N95 masks was observed after training compared with masks that were fitted as usual. This highlights the importance of training in mask-wearing, with the conclusion that training healthcare providers will improve the fit of masks.

Development and Control of a Roadway Seam Tracking Mobile Robot

  • Cho, Hyun-Taek;Jeon, Poong-Woo;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2502-2507
    • /
    • 2003
  • In this paper, a crack sealing robot is developed. The crack sealing robot is built to detect, track, and seal the crack on the pavement. The sealing robot is required to brush all dirt in the crack out for preparing a better sealing job. Camera calibration has been done to get accurate crack position. In order to perform a cleaning job, the explicit force control method is used to regulate a specified desired force in order to maintain constant contact with the ground. Experimental studies of force tracking control are conducted under unknown environment stiffness and location. Crack tracking control is performed. Force tracking results are excellent and the robot finds and tracks the crack very well.

  • PDF

Fabrication of plastic CE (capillary electrophoresis) microchip by hot embossing process (핫 엠보싱 공정을 이용한 플라스틱 CE(capillary electrophoresis) 마이크로 칩의 제작)

  • Cha Nam-Goo;Park Chang-Hwa;Lim Hyun-Woo;Park Jin-Goo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1140-1144
    • /
    • 2005
  • A plastic-based CE (capillary electrophoresis) microchip was fabricated by hot embossing process. A Si mold was made by wet etching process and a PMMA wafer was cut off from 1mm thick PMMA sheet. A micro-channel structure on PMMA substrate was produced by hot embossing process using the Si mold and the PMMA wafer. A vacuum assisted thermal bonding procedure was employed to seal an imprinted PMMA wafer and a blank PMMA wafer. The results of microscopic cross sectional images showed dimensions of channels were well preserved during thermal bonding process. In our procedure, the deformation amount of bonding process was below 1%. The entire fabrication process may be very useful for plastic based microchip systems.

  • PDF

Design and analysis of a newly devised linear flexure bearing(KIMM-LFB) for small precision reciprocating machines (소형 정밀 왕복동기기용 선형 탄성 베어링 모델(KIMM-LFB)의 설계 및 해석)

  • Choi, S.K.;Park, S.J.;Hong, Y.J.;Kim, H.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.404-409
    • /
    • 2002
  • A newly devised linear flexure bearing (KIMM-LFB) for reciprocating machines is disclosed having improved tight gas clearance maintaining capability for better system performance. KIMM-LFB is an integrated device comprising an axially moving diaphragm with circumferentially arranged arc-shaped flexure blades secured between rim and hub spacers, which turn out to have higher radial stiffness than the one with circumferential tangent cantilever flexure blades. It is expected for KIMM-LFB to play a key role in designing long life, special purpose reciprocating machines such as spacecraft borne cryogenic refrigerators (cryocoolers) by providing frictionless, non-wearing, linear movement and radial support for the machines as well as a gas clearance seal by maintaining extremely tight clearances between piston and cylinder.

  • PDF

Analytical Study on the Dynamic Response of Rubber Oil Seals (고무재 오일시일의 응답특성에 관한 해석적 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.42-46
    • /
    • 1996
  • This paper deals with a numerical study of the dynamic response of rubber oil seals for rotating shaft when interference as well as static and dynamic eccentricities are present. In loss of contact conditions the dynamic curve of oil seals is numerically simulated using the FEM package MSC/NASTRAN. The direct integration method is selected to analyze the time domain response of the seal lip-shaft contact. The computed results based on the experimental data indicate that the increased rotating speed may produce the gap separation between lip edge of rubber seals and shaft. These results will be very useful in predicting the dynamic leakage due to contact behaviors of rubber oil seals under dynamic conditions.

Design, Fabrication And Test of A Stiring Engine for Agriculture

  • Suh, Sang-Ryong;Kim, Jae-Young-
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.267-276
    • /
    • 1993
  • A kinetmatic stirling engine with a domed heater was designed, fabricated and test. In designing and fabrication of the engine various problems were confronted and solved. Among various parts of the engine, cooler and main seal needed sophisticated techniques to fabricated in order to prevent leakage of working gas from the parts and to ensure their proper functions in the engine. The engine had a series of experiment at various working gas pressure, heater temperatures and engine speeds to evaluate its performance. Indicated and brake power outputs and indicated and brake thermal efficiencies were determined from the experimental data. The engine resulted a little inferior performance to that of the GPU-3 engine of which performance was well reported . Several recommendations were made to improve the performance of the engine during the evaluation of its performance.

  • PDF

Burr Hole Drainage : Could Be Another Treatment Option for Cerebrospinal Fluid Leakage after Unidentified Dural Tear during Spinal Surgery?

  • Huh, Jisoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.1
    • /
    • pp.59-61
    • /
    • 2013
  • Authors report a rare case of acute intracranial subdural and intraventricular hemorrhage that were caused by intracranial hypotension resulted from cerebrospinal fluid leakage through an unidentified dural tear site during spinal surgery. The initial brain computed tomography image showed acute hemorrhages combined with preexisting asymptomatic chronic subdural hemorrhage. One burr hole was made over the right parietal skull to drain intracranial hemorrhages and subsequent drainage of cerebrospinal fluid induced by closure of the durotomy site. Among various methods to treat cerebrospinal fluid leakage through unidentified dural injury site, primary repair and spinal subarachnoid drainage are well known treatment options. The brain imaging study to diagnose intracranial hemorrhage should be taken before selecting the treatment method, especially for spinal subarachnoid drainage. Similar mechanism to its spinal counterpart, cranial cerebrospinal fluid drainage has not been mentioned in previous article and could be another treatment option to seal off an unidentified dural tear in particular case of drainage of intracranial hemorrhage is needed.

Fabrication of 3-dimensional microstructures for bulk micromachining (블크 마이크로 머신용 미세구조물의 제작)

  • 최성규;남효덕;정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.741-744
    • /
    • 2001
  • This paper described on the fabrication of microstructures by DRIE(Deep Reactive Ion Etching). SOI(Si-on-insulator) electric devices with buried cavities are fabricated by SDB technology and electrochemical etch-stop. The cavity was fabricated the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the fabricated cavity under vacuum condition at -760 mm Hg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing(1000$^{\circ}C$, 60 min.), the SDB SOI structure was thinned by electrochemical etch-stop. Finally, it was fabricated microstructures by DRIE as well as a accurate thickness control and a good flatness.

  • PDF

The Fabrication of SOB SOI Structures with Buried Cavity for Bulk Micro Machining Applications

  • Kim, Jae-Min;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.739-742
    • /
    • 2002
  • This paper described on the fabrication of microstructures by DRIE(deep reactive ion etching). SOI(Si-on-insulator) electric devices with buried cavities are fabricated by SDB technology and electrochemical etch-stop. The cavity was fabricated the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the fabricated cavity under vacuum condition at -760 mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing($1000^{\circ}C$, 60 min.), The SDB SOI structure was thinned by electrochemical etch-stop. Finally, it was fabricated microstructures by DRIE as well as an accurate thickness control and a good flatness.

  • PDF