• Title/Summary/Keyword: Sea-water heat source

Search Result 42, Processing Time 0.024 seconds

Renewable Energy Production by Heat Pump as Renewable Energy Equipment (신재생에너지 기기로서 히트펌프의 신재생에너지 생산량)

  • Hong, Hiki;Choi, Junyoung;Im, Shin Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.551-557
    • /
    • 2017
  • Most European economies, Japan, and many governments have made it a major policy to expand the green business by disseminating heat pump technology, which has a large $CO_2$ reduction effect. The heat pump of all heat sources has been recognized as renewable energy and the policy to encourage has been implemented. In the recently revised Renewable Energy Law, the hydrothermal source (surface sea water) heat pump was newly included in renewable energy. In addition, the scope of application of heat pumps has expanded in the mandatory installation of renewable energy for new buildings, remodeling buildings, and reconstructed buildings based on this law. However application to heat pumps using all natural energy as heat source has been put off. In this revision, the ratio of renewable energy to the total energy produced by the heat pump was fixed at 73%, which depends on coefficient of performance of heat pump. The ratio of renewable energy is $1-1.8/COP_H$, and should be calculated including the coefficient of performance of the heat pump. Using a high efficiency heat pump or a high-temperature heat source increases the coefficient of performance and also reduces $CO_2$ emissions. It is necessary to expand the application of heat pumps as renewable energy equipment and to improve the correct calculation of renewable energy production.

20kW Turbine Development for OTEC System (20kW OTEC 터빈 개발)

  • Han, Sangjo;Seo, JongBeom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.38-43
    • /
    • 2014
  • In Ocean, the temperature of the deep sea water is always lower than that of the surface sea water. The temperature difference between the surface water and deep sea water is about $20^{\circ}C$. Based on thermodynamics, this temperature difference can be converted into mechanical power. The mechanical power can be converted to electricity through a generator. However, the temperature difference is relatively small compared with that of traditional steam turbines. It is difficult to apply the steam turbine technology for this small temperature difference directly. Therefore, the turbine for OTEC system using low temperature difference should be designed to meet the system requirement. The present study focuses on the development of the turbine for 20 kW OTEC system using R32. The paper includes the determination of working fluids, meridional design, turbine layout and 3D CFD results. With off-design points analysis, the full performance of 20kW OTEC turbine is investigated. Through the research, one stage radial type turbine with R32 as working fluid is successfully developed and can be applied to other high temperature heat source.

Heating Performance Analysis of the Heat Pump System for Agricultural Facilities using the Waste Heat of the Thermal Power Plant as Heat Source (발전소 폐열을 이용한 농업시설용 히트펌프시스템의 난방 성능 분석)

  • Kang, Youn Koo;Kang, Suk Won;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung;Ryou, Young Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.317-323
    • /
    • 2017
  • In this study, the heating performance and the energy saving effect of the heat pump system using hot waste water(waste heat) of the thermal power plant discharged from a thermal power plant to the sea were analyzed. The greenhouse area was $5,280m^2$ and scale of the heat pump system was 120 RT(Refrigeration Ton), which was divided into 30 RT, 40 RT and 50 RT. The heat pump system consisted of the roll type heat exchangers, hot waste water transfer pipes, heat pumps(30, 40, 50 RT), a heat storage tank and fan coil units. The roll type heat exchangers was made of PE(Poly Ethylene) pipes in consideration of low cost and durability against corrosion, because hot waste water(sea water) is highly corrosive. And the heating period was 5 months from October to February. During the heating performance test(12 hours), the inlet water temperature of evaporator was changed from $32^{\circ}C$ to $26^{\circ}C$, and heat absorption of he evaporator was changed from 175 kW to 120 kW. The inlet water temperature of the condenser rose linearly from $15^{\circ}C$ to $50^{\circ}C$, and the heat release of condenser was reduced by 40 kW from 200 kW to 160 kW. And the power consumption of the heat pump system increased from 30 kW to 42 kW. When the inlet water temperature of condenser was $15^{\circ}C$, the heating COP(Coefficient Of Performance) was over 7.0. When it was $30^{\circ}C$, it dropped to 5.0, and when it was above $40^{\circ}C$, it decreased to less than 4.0. It was analyzed that the reduction of heating energy cost was 87% when compared to the duty free diesel that the carbon dioxide emission reduction effect was 62% by recycling the waste heat of the thermal power plant as a heat source of the heat pump system.

Modeling of non-isothermal CO2 particle leaked from pressurized source: I. Behavior of single bubble

  • Chang, Daejun;Han, Sang Heon;Yang, Kyung-Won
    • Ocean Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-31
    • /
    • 2012
  • This study investigated the behavior of a non-isothermal $CO_2$ bubble formed through a leak process from a high-pressure source in a deep sea. Isenthalpic interpretation was employed to predict the state of the bubble just after the leak. Three modes of mass loss from the rising bubble were demonstrated: dissolution induced by mass transfer, condensation by heat transfer and phase separation by pressure decrease. A graphical interpretation of the last mode was provided in the pressure-enthalpy diagram. A threshold pressure (17.12 bar) was identified below which the last mode was no longer present. The second mode was as effective as the first for a bubble formed in deep water, leading to faster mass loss. To the contrary, only the first mode was active for a bubble formed in a shallow region. The third mode was insignificant for all cases.

The Effect on the Heat Transfer According to Geometric Variation of Air-Fin Vaporizer with at Cryogenic Temperature (형상변화에 따른 초저온 공온식 기화기의 열전달 효과)

  • Lee, Sang-Chul;Shin, You-Sik;Bae, Kang-Youl;Jeong, Hyo-Min;Chung, Han-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.581-587
    • /
    • 2007
  • At present time, LNG demand of the world is increasing and the piping line for NG transportation has been already installed in Korea. The air fm vaporizer is, however, required because of the transportation for remotely local areas. This paper numerically investigates on the heat transfer characteristics of relevant geometric variations of air-fin vaporizer which is heated by air not by sea water. This vaporizer must be designed in consideration of both efficiency and economics because air is relatively a little heat source. In this study, the pipe and the longitudinal fins are fundamental geometric considerations. Main parameters of geometry are the number, the thickness, and the length of the fins. Finally, the results of heat transfer effects are investigated with the characteristics of each parameter variation.

Simulation of the Kalina cycle for a Geothermal Power Generation (지열발전을 위한 칼리나 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Park, Seong-Ryong;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.782-787
    • /
    • 2008
  • The Kalina cycle simulation study was carried out for a preliminary design of a geothermal power generation system. The Kalina cycle system can be used for the utilization of a low-temperature heat sources such as geothermal and industrial waste heat that are not hot enough to produce steam. The sea/river water can be considered as a cooling media. A steady-state simulation model was developed to analyze and optimize its performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump were modelled by an isentropic efficiency, while a condenser, an evaporator and a regenerative heat exchanger were modeled by UA-LMTD method with a counter-flow assumption. The simulation results show that the power generation efficiency over 10% is expected when a heat source and sink inlet temperatures are $100^{\circ}C$ and $10^{\circ}C$ respectively.

  • PDF

A Study on the Application of a Turbidity Reduction System for the Utilization of Thermal Wastewater in High Turbidity Zones (고탁도 해역의 온배수 활용을 위한 탁도저감시스템 적용에 대한 연구)

  • Ha, Shin-Young;Oh, Cheol;Gug, Seung-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.916-922
    • /
    • 2018
  • Recently, power plant effluent condensers received a Renewable Energy Certificate as components of hydrothermal energy (weighted 1.5 times) as one target item of the Renewable Portfolio Standard (RPS) policy. Accordingly, more attention is being paid to the value of thermal wastewater as a heat source. However, for utilization of thermal wastewater from power plants in high-turbidity areas like the West Sea of Korea, a turbidity reducing system is required to reduce system contamination. In this study, an experimental test was performed over a month on thermal wastewater from power plants located in the West Sea of Korea. It was found that water turbidity was reduced by more than 80 % and that the concentration of organic materials and nutrient salts was partially reduced due to the reduction of floating/drifting materials. To conduct a comparative analysis of the level of contamination of the heat exchanger when thermal wastewater flows in through a turbidity reducing system versus when the condenser effluent flows in directly without passing through the turbidity system, we disassembled and analyzed heat exchangers operated for 30 days. As a result, it was found that the heat exchanger without a turbidity reducing system had a higher level of contamination. Main contaminants (scale) that flowed in to the heat exchanger included minerals such as $SiO_2$, $Na(Si_3Al)O_8$, $CaCO_3$ and NaCl. It was estimated that marine sediment soil flowed in to the heat exchanger because of the high level of turbidity in the water-intake areas.

An Investigation on Quantity of Unused Energy Using Temperature Difference Energy as Heat Source and Its Availability (온도차에너지를 열원으로 하는 미활용에너지의 부존량과 이용가능성에 관한 조사연구)

  • 박준택;장기창
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.106-113
    • /
    • 2002
  • While the demand for energy has shown a sharp increase recently, the supply seems to be limited by the fact that the conventional fossil fuel energy or nuclear energy has its own environmental problems such as, for example, global warming or nuclear waste disposal. To overcome such limited supply of energy, the utilization of natural thermal energy such as river water and sea water as well as treated sewage can be a substantial supplement. The potential use of the unused energy has become more and more feasible these days as the heat pump technology has been advanced. In the present study, the unused energy reserves are estimated on regional and monthly basis for each resource based on the method developed here in order to establish the base data for its utilization. The potential use of the unused energy is also discussed.

Analysis on Rainwater Harvesting System as a Source of Non-Potable Water for Flood Mitigation in Metro Manila (마닐라의 홍수저감을 위한 잡용수 대체자원으로서의 가정용우수저류시설 분석)

  • Necesito, Imee V.;Felix, Micah Lourdes A.;Kim, Lee-Hyung;Cheong, Tae Sung;Jeong, Sangman
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.223-231
    • /
    • 2013
  • Excessive precipitation, drought, heat waves, strong typhoons and rising sea levels are just some of the common indicators of climate change. In the Philippines, excessive precipitation never failed to devastate and drown the streets of Metro Manila, a highly urbanized and flood-prone area; such problems are expected to occur frequently. Moreover, the water supply of Metro Manila is dependent only to Angat Reservoir. Rainwater harvesting can serve as an alternative source of raw water and it can mitigate the effects of flooding. The harvested rainwater can be used for: potable consumption if filtered and disinfected; and non-potable consumptions (e.g., irrigation, flushing toilets, carwash, gardening, etc.) if used untreated. The rainfall data were gathered from all 5 rainfall stations located in Metro Manila namely: Science Garden, Port Area, Polo, Nangka and Napindan rain gauge stations. To be able to determine the potential volume of rainwater harvested and the potentiality of rainwater harvesting system as an alternate source of raw water; in this study, three different climatic conditions were considered, the dry, median and wet rainfall years. The frequent occurrence of cyclonic events in the Philippines brought significant amount of rainwater that causes flooding in the highly urbanized region of Metro Manila. Based from the results of this study, the utilization of rainwater harvesting system can serve as an alternative source of non-potable water for the community; and could also reduce the amount of surface runoff that could result to extreme flooding.

Impacts of Ocean Currents on the South Indian Ocean Extratropical Storm Track through the Relative Wind Effect

  • Hyodae Seo;Hajoon Song;Larry W. O'Neill;Matthew R. Mazloff;Bruce D. Cornuelle
    • Journal of Climate Change Research
    • /
    • v.34 no.22
    • /
    • pp.9093-9113
    • /
    • 2021
  • This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.