• Title/Summary/Keyword: Sea-sediment

Search Result 909, Processing Time 0.027 seconds

Deposition Properties of $^{137}Cs$ in Marine Sediments

  • Park, G.;Lin, X.J.;Kim, W.;Kang, H.D.;Lee, H.L.;Kim, Y.;Doh, S.H.;Kim, D.S.;Yun, S.G.;Kim, C.K.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.353-360
    • /
    • 2003
  • The concentration of $^{137}Cs$, the particle size, and the contents of TOC, H, N and S were measured for sediments collected in the adjacent sea to Yangnam, Korea. The concentrations of $^{137}Cs$ in sediments are in the range of $^{137}Cs$ for sediments strongly depend on particle size and TOC content of sediments. The results of multiple regression analysis suggest that humic substances may have great influence on the deposition of $^{137}Cs$ in sediment.

Spatial Variations of Heavy Metal Accumulation in Manila clam Ruditapes philippinarum from Some Selected Intertidal Flats of Korea (우리나라 갯벌 조간대 바지락 Ruditapes philippinarum의 지역별 중금속 농축 변화)

  • Ahn In-Young;Ji, Jung-Youn;Choi, Hee-Seon;Pyo, Sei-Hong;Park, Hyun;Choi, Jin-Woo
    • Ocean and Polar Research
    • /
    • v.28 no.3
    • /
    • pp.215-224
    • /
    • 2006
  • Spatial variation of heavy metal accumulation was investigated in Manila clam Ruditapes philippinarum collected from several tidal flats. Sediment metal levels varied highly among the sites, which was attributed primarily to differences in Fe and organic carbon contents and in part to gain size. Significant differences in metal concentrations also were found in the clam tissue among the different sampling sites. However, except for a few metals (Mn, Zn, Pb), which showed some elevation, the variations in the clam tissue were not related to the variations in the sediment. This is likely because most metals in filter-feeding herbivores such as R. philippinarum accumulated as a result of feeding on suspended particles such as phytoplankton and organic detritus in the water column, not in bottom sediment. In addition, tissue weight for a specific shell size varied significantly among the sites, and increased tissue mass indicating a good nutritive condition likely caused a subsequent dilution of body metals leading to reduced weight-specific concentrations of some metals (Cd, Zn, Cu, Co).

Bioaccumulation of Polychlorinated Biphenyls (PCBs) and Organochlorine Pesticides in Manila Clams (Ruditapes philippinarum) Collected from the Mid-western Coast of Korea

  • Choi, Jin-Young;Yang, Dong-Beom;Hong, Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.237-245
    • /
    • 2010
  • Bioaccumulation of polychlorinated biphenyls (PCBs) and organochlorine pesticides was studied in sediment dwelling bivalves, Manila clams (Ruditapes philippinarum), collected from the midwestern coast of Korea. As witnessed by the dominance of tetra- to penta-chlorinated congeners in sediments and the penta- to hexa-chlorinated congener dominance in clams, the profile of PCBs in the sediments and Manila clams differed. Lipid and organic carbon-normalized biota-sediment accumulation factors (BSAFs) were determined for organochlorine pesticides. BSAFs of $\beta$-hexachlorocyclohexane ($\beta$-HCH) and $\Sigma$DDTs were in the range of 0.06~1.36 and 0.31~1.06. No clear relationships were found between BSAFs of $\Sigma$DDTs in Manila clams and the concentrations of DDTs in the associated sediment. The accumulated PCBs and organochlorine pesticides were compared in Manila clams and oysters (Crassostrea gigas) collected from 3 sites. Highly chlorinated PCBs were more commonly found in oyster tissues than in clam tissues. The reasons for the different accumulation pattern of organic pollutants in the two organisms are discussed.

Bathymetric Changes in the Nakdong River Estuary owing to Discharge from the Nakdong River Barrier and Environmental Factors (하구둑 방류와 환경적 인자에 따른 낙동강 하구 지역 해저 지형변화 연구)

  • Kim, Ki-cheol;Kim, Sung-Bo
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.507-517
    • /
    • 2021
  • In this study, the bathymetric data acquired from 2018 to 2020 and the precipitation and suspended sediment data were analyzed for changes in bathymetry owing to the discharge from the Nakdong River barrier and environmental factors, especially the torrential rain in 2020. Sediment erosion and deposition processes are repeated because of complex environmental factors such as discharge from the Nakdong River barrier and the influence of waves generated from the external sea. In the first half of the year after the dry season, bathymetric data showed relative erosion trends, whereas in the second half after the flood season, deposition trends were identified owing to the increase in sediment transport. However, the data from the second half of 2020 showed a large amount of erosion, resulting in tendencies different to those of erosion in the first half and deposition in the second half of the year. This result is judged to be influenced by the weather in the summer of 2020. The torrential rain in the summer of 2020 resulted in a higher force of erosion than that of deposition. In summary, the tendency for erosion is more significant than that of sedimentation, especially in the main channel area of the Nakdong River.

Development of the Holocene Sediments in Gamak Bay of the South Sea, Korea (남해 가막만의 현생퇴적층 발달특성)

  • Kim, So Ra;Lee, Gwang Soo;Choi, Dong Lim;Kim, Dae Choul;Lee, Tae Hee;Seo, Young Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • High-resolution seismic profiles coupled with sediment sampling were analyzed to investigate the acoustic characters and distribution patterns of the late Holocene sediments in Gamak Bay of the South Sea, Korea. The mean grain size of surficial sediment lies around $6.3{\sim}9.7{\Phi}$. Sediments in the bay consist of silt and clay with progressive decrease toward the inner bay. The seismic sedimentary sequence overlying the acoustic basement can be divided into two sedimentary units (GB I and II) by a prominent mid-reflector (Maximum Flooding Surface; MFS). The acoustic basement occurs at the depth between 20 m and 40 m below the sea-level and deepens gradually southward. The GB I, mostly occupying the channel-fill, is characterized by reflection-free seismic facies. It can be formed as late Transgressive System Tract (TST), interpreted tidal environment deposits. MFS appears at the depth of about 15~28 m below the sea-level and is well defined by even and continuous reflectors on the seismic profile. The GB II overlying MFS is composed of acoustically transparent to semitransparent and parallel internal reflectors. GB II is interpreted as the Highstand System Tract (HST) probably deposited during the last 6,000 yrs when the sea level was close to the present level. Especially, it is though that the GB II was subdivided into two layers (GB II-a and II-b) by a HST-reflector and this was classified by wind, sea water flux, and tidal current.

Use of comet assay as a bioassay in marine organisms exposed to genotoxicants (유전독성물질로 오염된 해양생물의 생물검정법으로서 comet assay 이용)

  • Kim Gi-Beum;An Joon-Gun;Kim Jae-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1071-1079
    • /
    • 2005
  • Using single cell gel electrophoresis, DNA single strand breaks were determined in various marine organisms. DNA damage on fish blood cells was detected to know whether there was a difference between Incheon, Pohang, Masan, and Tongyeong as a control site. Tongyeong showed the lowest DNA damage among the study areas. Mussels, transplanted to Masan Bay for one month, revealed high DNA damage at sites with high economical activity. In two weeks exposure of polychaete to Incheon sediments, higher DNA damage was detected in the sediment adjacent to Incheon harbor than open sea. These results suggested that the marine organism from the polluted area revealed a relatively high DNA damage. In addition, these areas might be contaminated with genotoxic compounds and comet assay was useful as a bioassay to detect DNA damage in marine organisms.

The Satellite Observation for Spatial Changes of Vegetation in Saemangum Tidal Flat (새만금 갯벌의 식생 공간변화에 대한 위성관측)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.150-156
    • /
    • 2014
  • The aim of this study is to detection of changed vegetation area of Saemangeum tidal flat with comparison of topography and surface sediments during the dyke construction. Sedimentary facies of four seasons of 2001 from inside Saemangeum tidal flat revealed homogeneous layers in the upper part, however near sea side tidal flat were detecting with carried out rapid sediment deposition during the dyke construction using satellite image spatial analysis. The sedimentation types inside Saemangeum tidal flat were classified with vegetation types, which were well matched with the sedimentation pattern revealed by change in vegetation patterns.

Evaluation of Water Quality in the Keum River Estuary by Multivariate Analysis (다변량 해석기법에 의한 금강 하구역의 수질평가)

  • 김종구
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.591-598
    • /
    • 1998
  • This study was conducted to evaluate water quality in the Keum River estuary using principal component analysis. The results was summarized as follow; Water quality in the Keum River estuary could be explained up to 70.40% by three factors which were included in the inffluent loading by the Keum River and Kyungpo cheon(38.99%), seasonal variation and organic matter pollution(19.05%), sediment resuspension and internal metabolism(12.35%). For spatial variation of factor score, artificial pollutant loading is highest at st.1, below Keum River barrage, and decreases toward the outer sea. For annual variation of factor score, factor 1 was highly related to artificial pollutant leading, and it was gently increased in 1994. Also, organic matter pollution, sediment resuspension and internal metabolism were increased to every year. It is necessary to control the nutrient leading by Keum river and Kyongpo cheon for Water quality management of estuary.

  • PDF

3.5kHz seismic images of the gas-charged shallow sediment at Kwangyang Bay and the Yeosu Sound on the southern coast of Korea (광양만과 여수해만의 가스함유 표층퇴적물의 3.5kHz 탄성파 영상)

  • 오진용
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.239-246
    • /
    • 2000
  • The 3.5kHz sub-bottom profiling was carried out over both Gwangyang Bay and the Yeo Sound . High -resolution digital images of uppermost sediment layers are obtained from the field data which were originally recorded in analog mode. Most prominent feature along the acoustic profiles is the chaotic reflections which imply the presence of shallow gas within the silty sediments. In the western part of Gwangyang Bay, the gas-charged sediments are assoicated with the acoustic turbidity of the blanket type. Across the Seomjin Delta in the eastern part of Gwangyang Bay, the gas-charged seismic facies are observed just beneath the sea bottom. In the western Yeoul Sound , the gassy seiments occur widely , whereas it is rare in the eastern counterpart with the <30-m-deep channel. We postulate that this gas was biogenetically produced within the organic-rich deposits.

  • PDF