• Title/Summary/Keyword: Sea currents

Search Result 444, Processing Time 0.023 seconds

Comparisons of Ocean Currents Observed from Drifters and TP/ERS in the East Sea

  • Lee, Dong-Kyu;Niiler, Pearn P.;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • Ocean currents estimated from sea height anomalies derived from inter-calibrated TP/ERS are compared with daily mean currents measured with satellite-tracked drifters. The correlation coefficient between the geostrophic current from TP/ERS and surface current at 15 m depth from drifter tracks was found to be about 0.5. Due to the limitation of satellite ground tracks, small scale eddies less than 80 km are poorly resolved from TP/ERS. One of the interesting results of this study is that coastal currents along the eastern coast of Korea were well reproduced from sea height anomalies when the coastal currents were developed in association with eddies near the South Korean coast. The eddy kinetic energy (EKE) estimated from drifters, TP/ERS, and a numerical model are also compared. The EKE estimated from drifters was about 22 % higher than EKE calculated from TP/ERS. The pattern of low EKE level in the northern basin and high EKE level in the southern East Sea is shown in the EKE estimates derived from both the drifters and TP/ERS.

  • PDF

Abyssal Currents Driven by a Local Wind Forcing through Deep Mixed Layer: Implication to the East Sea

  • Seung, Young-Ho
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • A simple analytical model is considered in an attempt to demonstrate a formation mechanism of the abyssal current in the East Sea. In this model, the abyssal currents are driven by wind through an outcrop region and flow along closed geostrophic contours. A rough estimate of the abyssal currents, arrived at by applying this model to the region of deep mixing in the East Sea, gives currents comparable to those observed, although there is an uncertainty in the surface area of the outcrop region. It seems that the spin-up of deep water by wind forcing through the region of deep winter mixing is, at least partly, an important contribution to the formation of the abyssal currents in the East Sea.

Numerical study for classifying generation types of rip currents at the beaches of the East Sea coast (수치모의를 통한 동해안 해수욕장의 이안류 발생 형태 분류 연구)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.645-655
    • /
    • 2022
  • Recently rip currents are frequently observed in the summer at the beaches located along the East Sea coast. To understand the generation types of rip currents occurred at the Ease Sea beaches, numerical simulations of rip currents over the topographies of the Sokcho, Naksan, Gyeongpo, Mangsang beaches were performed by using a Boussinesq-type wave and current model, FUNWAVE. The offshore and nearshore topographically-controlled rip currents and the transient rip currents were well reproduced due to the alongshore non-uniformities involving the phase interaction effects. This study looked over the generation types of rip currents to occur at the beaches with complicated field bathymetries.

The Characteristics of Coastal Currents to the Northwest of the Taean Peninsula in the Yellow Sea (서해 태안반도 북서 연안해역에서의 연안류 특성)

  • Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.433-441
    • /
    • 2005
  • To investigate the characteristics of tidal currents and water circulation in the coastal waters off the Taean Peninsula, tidal currents and sea levels were measured at the study area from 1998 to 2004. In the central waterway to the south of Changan Sand Ridge, mean speed of tidal currents and residual currents were 74.0cm/s, 17.8cm/s respectively; the dominant residual currents flowed northeastward, and the amplitudes of semi-diurnal components $(M_2,\;S_2)$ were larger than diurnal components $(O_1,\;K_1)$. The flood and ebb tidal currents were northeastward and southwestward, respectively, and each period was about 6 hours for them, which was consistent with the period of sea levels at the study area. In the coastal region near Hakampo, Taean, mean velocities of tidal currents and residual currents were 46.1cm/s, 30.8cm/s respectively, and the dominant residual currents flowed southwestward. The amplitudes of shallow water constituents $(M_4,\;MS_4)$ were relatively laige, which were weaker to the northeastern coastal region off Mineodo. The northeastward flow continued for about $2{\sim}3$ hours, while the southwestward flow continued for about $9{\sim}10$ hours near Hakampo during the tidal period. Tidal currents flowed northeastward in the central area of the waterway during the period from the Low Water Level (LWL) to the High Water Level (HWL). While the currents in the coastal region flowed northeastward for the first 3 hours after the LWL, southwestward counter-currents flowed between 3 and 6 hours after the LWL. During the period from the HWL to the LWL, the dominant currents flowed southwestward in the study area except to the northeastern coastal region off Mineodo. Along the shorelines, the counter-currents flowed northward between 4 and 6 hours after the HWL. It seems that the counter-currents near the coastal region are caused by the topography and the geography of the shorelines at the study area.

Numerical Experiment on Sea Prince Oil Spill Incident Using a High Resolution Ocean Circulation Model (고해상도 해양순환모형을 이용한 씨프린스호 유류유출 사고 수치실험)

  • Kim, Ye-Sol;Lee, Ho-Jin;Jung, Kyung-Tae;Park, Jae-Hun;Lee, Hyun-Jung
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.337-348
    • /
    • 2012
  • This study investigates the effects of tide, wind and oceanic currents on oil spill dispersions through a series of numerical floats tracking experiments on the Sea Prince oil spill incident occurred in 1995 using a 3-dimensional high resolution ocean circulation model. For that, a total of four experimental cases (experiment with tide, wind and oceanic currents, experiment with tide and oceanic currents, experiment with wind and oceanic currents, and experiment with tide and wind) were compared. It could be seen that results from experiment involving all external forces showed better agreement with the observed pattern of oil slick movement than other cases. The oceanic currents acted to drive floats to move to the western channel of the Korea straits and wind accelerated the eastward movement of floats in the early stage of the incident. Tidal currents played significant role in the horizontal dispersion of floats.

A Review of Ocean Circulation of the East/Japan Sea (한국 동해 해수순환의 개략적 고찰)

  • 김종규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.103-107
    • /
    • 2001
  • The major studies of an ocean circulation of the East/Japan Sea related to evaluate the feasibility and utilization of deep ocean water are reviewed. The major feature of surface current system of the East/Japan Sea is an inflow of the Tsushima Warm Current through the Korea/Tsushima Strait and the outflow through the Tsugaru and Soya Straits. The Tsushima Warm Current has been known to split into two or three branches in the southern region of the East/Japan Sea. In the cold water region of the East/Japan Sea, the North Korean Cold Current turns to the east near 39$^{\circ}$N after meeting the East Korean Warm Current, then flows eastward. The degree of penetration depends on the strength of the positive wind stress curl, according to the ventilation theory. Various current meter moorings indicate strong and oscillatory deep currents in various parts of the basin. According to some numerical experiments, these currents may be induced by pressure-topography or eddy-topography interaction. However, more investigations are needed to explain clearly the presence of these strong bottom currents. This study concludes the importance of topographical coupling, isopycnal outcropping, different wind forcing and the branching of the Tsushima Warm Current on the circulation of the East/Japan Sea.

  • PDF

POM/MICOM Inter-Comparison in Modeling the East Sea Circulation

  • Kim, Kuk-Jin;Seung, Young-Ho;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2001
  • A model-to-model comparison is attempted between Princeton Ocean Model (POM) and Miami Isopycnic Coordinate Ocean Model (MICOM) as a first step to extend our knowledge of models' performances in studying the East Sea circulation. The two models have fundamentally different numerical schemes and boundary conditions imposed on these models are not exactly the same each other. This study indicates that MICOM has a critical weak point in that it does not reproduce the shallow surface currents properly while it handles the thermohaline processes and associated movements of intermediate and deep waters efficiently. It is suggested that the mixed layer scheme needs to be modified so that it can match with inflow boundary conditions in order to reproduce the surface currents properly in MICOM. POM reproduces the surface current pattern better than MICOM, although the surface currents in POM appear to undergo the unrealistic seasonal variation and have exaggeratedly large vertical scale. These defects seem to arise during the process of adapting POM to the East Sea, and removing these defects is left as a future task.

  • PDF

Study of the Tidal Currents in Sea Areas around Gyeong-In Waterway (경인아라뱃길 주변해역의 해수유동에 관한 연구)

  • Baek, Seung Hwa;Shin, Bum-Shick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5826-5834
    • /
    • 2014
  • This paper examined the changes in flow patterns due to a blockage of tidal currents in the sea areas between Incheon North Port and Yeomha Channel when it would be influenced by the construction of the Incheon North Port Yeongjongdo dredged soil dumping ground and Incheon Bay tidal power plant. The numerical simulation was performed for three cases: before and after constructing the Incheon North Port Yeongjongdo dredged soil dumping ground and after the construction of the sea-dyke on the east side of the Incheon Bay tidal power plant. The simulation results showed that the tidal directions and currents velocity were similar before and after the construction of the Yeongjongdo dredged soil dumping ground. After the construction of the East Sea-dyke of Incheon tide power plant, however, the tidal currents patterns changed significantly due to flow blockage toward Gyeonggi Bay. The main flow was formed in the north-south direction, and the tidal currents velocity increased slightly on the downstream areas (A,B,C) of Hodo, which is the entrance of the Ara Waterway. The tidal currents at the mouth(D) of Yeomha Channel decreased significantly. The tidal currents of the west side of Se-eodo and the east side of the sea-dyke were rotary currents. The results of this study will provide basic data for the environmental impact assessment and the operation of the Gyeongin Ara Waterway.

An Estimation of Tidal Currents from Satellite-tracked Drifters and its Application to the Yellow Sea

  • Lee, Se-Ok;Cho, CHeol-Ho;Kang, Sok-Kuh;Lie, Heung-Jae
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.65-77
    • /
    • 2000
  • A simple but effective method has been developed for estimating diurnal and semi-diurnal tidal currents from trajectories of satellite-tracked drifters. The estimation method consists of separation of tidal current signals contained in the drifter trajectories, computation of undulations by diurnal and semi-diurnal currents, and correction of dominant diurnal and semi-diurnal tidal constituents. M$_2$ tidal currents estimated from drifter trajectories in the Yellow Sea are well consistent with those observed by moored current meters and this supports the validity of this method. We have constructed M$_2$ tidal current chart in the Yellow Sea by applying this method to available drifter trajectories collected during 1994-1998. According to this chart, M$_2$ current in the Yellow Sea rotates in the clockwise direction south of 35$^{\circ}$ 30'N but in the counterclockwise one to the north. Also it is found that the M$_2$ current is strong in the bank area northeast of the Changjiang River mouth and in the Korean coastal area, while it is weak in the deep central trough.

  • PDF

The Effects of Tidal Currents and Residual Flow on the Sea Dike (해안방조제가 조류 및 잔류흐름에 미치는 영향)

  • Park, Joong-Cheol;Yoon, Young-Ho;Shin, Moon-Seup;Manh, Dinh-Van
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • Three-dimensional hydrodynamic numerical simulation is carried out to investigate the effects of the coastal land reclamation on the marine hydrodynamics, environment and ecosystem. The changes of tide, tidal currents and residual currents, including tide-induced, wind driven and density driven components due to the construction of the sea dike system are simulated numerically The governing equations transformed into o-coordinates are solved by an implicit finite difference method. The numerical model is calibrated using the tide charts of 4 major tidal constituents, M$_2$, S$_2$, $K_1$ and $O_1$. The numerical solutions show that there are significant changes of residual currents, especially induced by both tidal and wind-driven currents.